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Foreword

The general idea that brains anticipate the future, that they engage in prediction,
and that one means of doing this is through some sort of inner model that can be run
offline, has a long history. Some version of the idea was common to Aristotle, as well
as to many medieval scholastics, to Leibniz and Hume, and in more recent times,
to Kenneth Craik and Philip Johnson-Laird. One reason that this general idea recurs
continually is that this is the kind of picture that introspection paints. When we are
engaged in tasks it seems that we form images that are predictions, or anticipations,
and that these images are isomorphic to what they represent.

But as much as the general idea recurs, opposition to it also recurs. The idea
has never been widely accepted, or uncontroversial among psychologists, cognitive
scientists and neuroscientists. The main reason has been that science cannot be sat-
isfied with metaphors and introspection. In order to gain acceptance, an idea needs
to be formulated clearly enough so that it can be used to construct testable hypothe-
ses whose results will clearly support or cast doubt upon the hypothesis. Next, those
ideas that are formulable in one or another sort of symbolism or notation are capable
of being modeled, and modeling is a huge part of cognitive neuroscience. If an idea
cannot be clearly modeled, then there are limits to how widely it can be tested and
accepted by a cognitive neuroscience community. And finally, ideally, the idea will
be articulated and modeled in such a way that it is not a complete mystery how it
could be implemented by the brain. Though the idea that the brain models and pre-
dicts and anticipates is supported by introspection and a long history of hypotheses,
it has largely failed on these latter three counts – especially compared with various
theoretical competitors. And this is why the extent to which it has been embraced
by cognitive science and neuroscience has been limited.

But there is good news. Mathematical tools from a number of areas, including
modern control theory and signal processing, are capable of allowing for very pre-
cise mathematical formulations of the basic idea, as well as many specific versions.
This allows for the ideas not only to be precisely formulated, but also to be mod-
eled and compared to human behavioral data. And given a number of schemes for
implementing these kinds of mathematical models in neural systems, it is possible
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to see these models as being implemented in the brain. The qualitative idea that the
brain models the world is finally being clarified and quantified.

But we are still in the early stages of this process. While there are many pro-
posals and theories that are beginning to take shape, there have been few sustained
treatments of the topic that attempt to develop them in detailed and consistent ways.
Rather, the applications have largely been piecemeal. In this regard the present vol-
ume represents a significant advance in the field. It offers a sustained treatment of
various aspects of the general hypothesis, not only in terms of being conceptually
clear and consistent, but also in terms of presenting a wide range of particular ap-
plications that illustrate the conceptual machinery in action.

It would be an overstatement to say that the idea that the brain is a modeler and
predictor is revolutionary, or that the current swell in theoretical interest in the idea
represents the initial stages of a revolution in cognitive neuroscience. But while talk
of revolution may be overstatement, it cannot be denied that this approach to under-
standing brain function is beginning to take on an importance comparable to that of
traditional artificial intelligence approaches and connectionist modeling approaches.
The clarity, detail and quality of the ideas presented in this volume, coupled with
the growing importance of this general approach, make this volume a critical contri-
bution to our understanding of brain function, and should be read by anyone with a
serious interest in understanding how the brain manages to support cognitive func-
tions.

July 2008 Rick Grush
University of California, San Diego



Preface

Prediction is difficult – especially for the future. Niels Bohr

Over the last few decades, it has become increasingly clear that animals most
of the time do not simply react in their world based on unconditioned or condi-
tioned stimuli, but rather actively operate in their environment in a highly goal- and
future-oriented way, and not just on the basis of current perception, but in part au-
tonomously from environmental stimuli. Psychology now suggests that it is the goal
itself that triggers behavior and attention. Learning is highly influenced by current
predictive knowledge and the consequent detection of novelty. Behavioral control
is most effectively controlled by the help of forward models that substitute delayed
or that enhance noisy perceptual feedback. Thus, anticipations come in many forms
and influence many cognitive mechanisms.

This book proposes a unifying approach for the analysis and design of artificial
cognitive systems: The anticipatory approach. We propose a foundational view of
the importance of dealing with the future, of gaining some autonomy from current
environmental data, of endogenously generating sensorimotor and abstract represen-
tations. We propose a meaningful taxonomy of anticipatory cognitive mechanisms,
distinguishing between the types of predictions and the different influences of these
predictions on actual behavior and learning. Doing so, we sketch out a new, unify-
ing perspective on cognitive systems. Mechanisms, that have often been analyzed
in isolation or have been considered unrelated to each other, now fit into a coherent
whole and can be analyzed in correlation to each other. Learning and behavior are
considered increasingly intertwined and correlated with each other. Attention and
action control suddenly appear as very similar processes. Goal-oriented behavior,
motivation and emotion appear as related and intertwined.

While the revelation of these correlations is helpful for the analysis and com-
parison of different learning and behavioral mechanisms, the second benefit of the
anticipatory approach is the possibility to modularly design novel cognitive system
architectures. The developed taxonomy clearly characterizes which aspects are im-
portant for different anticipatory cognitive modules and how these modules may
interact with each other. Thus, the second benefit of the anticipatory approach is
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the facilitation of cognitive system design. Building blocks of cognitive systems are
proposed and exemplarily analyzed in diverse system architectures. The interaction
of these building blocks then is characterized by their anticipatory nature, facilitat-
ing the design of larger, more competent autonomous artificial cognitive systems.
We hope that the proposed anticipatory approach may thus not only serve for the
analysis of cognitive systems but rather also as an inspiration and guideline for the
progressively more advanced and competent design of large, but modular, artificial
cognitive systems.
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Theory



Chapter 1
Introduction: Anticipation in Natural and
Artificial Cognition

Giovanni Pezzulo, Martin V. Butz, Cristiano Castelfranchi, and Rino Falcone

The purpose of brains is to produce future. Paul Valery

1.1 Introduction

What will artificial cognitive systems of the future look like? If we are asked to
imagine robots, or intelligent software agents, several features come to our mind
such as the capability to adapt to their environments and to satisfy their goals with
only limited human intervention, to plan sequences of actions for realizing long-
term objectives, to act collectively in view of complex objectives, to interact and
cooperate with us, with and without natural language, to take decisions (also in our
place), etc.

Currently these capabilities are far beyond the possibilities of robots and other
artificial systems. In the next years a huge effort will be required for scaling up the
potentialities of the artificial systems that we are able to build nowadays. One way
to overcome these limitations is to take inspiration form the functioning of living
organisms. A large body of evidence, which we review in this chapter, indicates that
natural cognitive systems are not reactive but essentially anticipatory systems. We
do not think that this is a mere coincidence. On the contrary, we claim that anticipa-
tion is a crucial—and foundational—phenomenon in natural cognition. Individual
behavior is guided by anticipatory mechanisms that are used for behavioral control,
perceptual processing, goal-directed behavior, and learning. And also effective so-
cial behavior relies on the anticipation of the behavior of other agents. We argue
that anticipation is a key ingredient for the design of autonomous, artificial cogni-
tive agents of the future: Only cognitive systems with anticipation mechanisms can
be credible, adaptive, and successful in interaction with both the environment and
other autonomous systems and humans. This is the challenge that we anticipate for
the future of cognitive systems research: the passage from reactive to anticipatory
cognitive embodied systems.

G. Pezzulo et al. (Eds.): The Challenge of Anticipation, LNAI 5225, pp. 3–22, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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1.1.0.1 From Reactive to Anticipatory Cognitive Embodied Systems

Overall, we propose an integrated approach to the study of anticipation that encom-
pass empirical, theoretical, and computational approaches. The study of anticipation
has a long history in the empirical literature, that we will review extensively in the
next section. In Chapter 2, we focus on the investigation of anticipatory functional-
ities from a conceptual point of view as well as from a computational one. Despite
some studies available on this topic, we believe that a unitary approach to the study
of anticipation is still missing. This book intends to address exactly this challenge.

1.1.0.2 Overview of This Chapter

The first part of this chapter is conceptual in nature. It consists in finding ‘con-
ceptual keys’ to understand the phenomena of cognition and behavior, and to use
them to inspire our design methodology. For this reason, in Section 1.2 we propose
theoretical arguments for assessing the relevance of anticipation and anticipatory
behavior in cognition. We start from a discussion of the role anticipation has played
in cognitive science and artificial systems research. Particularly, we highlight why
living organisms endowed with anticipatory capabilities are able to develop cogni-
tive capabilities—from simpler to more complex ones—including those based on
representations. In conclusion, we propose that cognitive minds inevitably have to
be anticipatory devices. We also argue that studying anticipatory mechanisms in the
brain in isolation does not suffice. Rather, it is also necessary to understand the na-
ture of future-oriented behavior, and of future-oriented representations: which are
their specific advantages, why do cognitive agents need to anticipate, etc.

Since this book aims to offer design principles for endowing artificial systems
with anticipatory capabilities, it is essential to analyze in detail the specific roles
of anticipation in several cognitive functions, including sensorimotor control, at-
tention, internal preparation to action, emotional regulation, learning, exploration,
curiosity, and decision making. For this purpose, in the second part of this chapter
we focus on how anticipatory mechanisms actually work in living organisms: Sec-
tion 1.3 gives a review of psychological and neuroscientific theories and models of
anticipation. This systematic exploration of natural anticipatory systems is meant to
be a source of inspiration for the sake of designing artificial anticipatory systems
that have the same levels of adaptivity, flexibility, and autonomy.

1.2 The Path to Anticipatory Cognitive Systems

Before we delve into the different aspects of predictions and anticipatory capabili-
ties, we first sketch out the research path that lead to explicit studies of anticipatory
cognitive mechanisms such as the formulation of the theory of anticipatory behav-
ioral control (Hoffmann, 1993; Hoffmann et al., 2004), the study of anticipatory
behavior (Butz et al., 2003b, 2007b), the proposition of the mind as an anticipatory
device (Castelfranchi, 2005; Pezzulo and Castelfranchi, 2007), and ultimately the
authoring of this book.



1 Introduction: Anticipation in Natural and Artificial Cognition 5

1.2.1 Symbolic Behavior, Representation-Less Behavior, and
Their Merge to Anticipatory Behavior

Traditionally, artificial intelligence (AI) investigated the functionality of symbol-
oriented cognitive mechanisms, such as search, planning, and decision making in
well-defined, discrete problems, principles of first-order logic, of learning based on
symbolic inputs (Russell and Norvig, 1995). The concept of representation as tradi-
tionally defined and used in AI was rather detached from actually available sensory
information, yielding impressive performance in well-defined environments, such as
the game of chess, but highly unsatisfactory performance in natural environments,
such as for adaptive robot control. In the latter case, the traditional AI-based systems
suffered from several fundamental problems: (1) The scalability problem restricted
the systems to solve only highly simplified and very small toy problems. (2) The
symbol grounding problem (Harnad, 1990) prevented them from identifying effec-
tive sensory discretizations, so that effective symbolic representations, which may
be suitable for planning or decision making, did not emerge. (3) The frame prob-
lem (McCarthy and Hayes, 1969) prevented systems from effectively representing
action-affected and -unaffected parts of the environment with logic-based represen-
tations.

As a consequence, the situated approach to cognition gained popularity (Brooks,
1991; Chiel and Beer, 1997; Pfeifer and Scheier, 1999). The situated approach chal-
lenges several weak points of traditional AI methodology such as that all ‘cognitive’
functions (including perception, categorization, etc.) are assumed to be based on
(the manipulation of) internal representations and that reasoning is overemphasized
in comparison with situated motor activity. The subsequent situated AI approach
had a great impact on our current understanding of cognition, learning, and adap-
tive behavior. For example, it was shown that the effective coupling of brain-body-
environment dynamics, without representational processes, can yield very efficient,
representation-less behavioral patterns (Braitenberg, 1984; Brooks, 1991). Many of
the consequentially realized cognitive functions were previously considered rep-
resentational in nature. The consequence of these behavioral successes lead to a
critical reconsideration of the role of representations and internal processes.

A fundamental side effect of this approach is the emphasis on reactive mecha-
nisms, which mainly originates from the necessity to avoid the grounding problem
and at the same time to de-emphasize the role of internal representations. This fact
has produced a lack of interest for representational processes, which are however
widespread in natural cognition, and resulted in skepticism with respect to the need
of internal models and representations.

Although reactive and non-representational systems have shown a range of capa-
bilities that were unsuspected, it became also increasingly clear that they will never
reach the levels of complexity observable in natural cognitive systems. On the con-
trary, the important role for anticipations and anticipatory mechanisms in natural
cognition is highlighted in several empirical studies. Nature seems to have found a
suitable way to overcome the shortcomings of reactive systems by endowing living
organisms with anticipatory mechanisms.
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1.2.2 The Power of Anticipation: From Reactivity to Proactivity

Reactive systems are those that produce behavior as a response or reaction to
(sensed) environmental conditions and internal needs. They do not need to have
a complex representation of their environment since it is sufficient for them to sense
it. Take as an example a reactive driving rule: If you see the car in front of you stop-
ping (e.g., you see the red lights indicating the stop), then press the brake. In normal
traffic conditions, a reactive system endowed with this rule is able to avoid accidents
most of the time. In artificial systems research, reactive rules (independently of how
they are implemented) lead to efficient systems, since the computation they have
to carry out is simple and cheap. However, these systems are not versatile, since
they tend to have stereotyped responses, and they are not able to prepare for future
conditions, but rather they have to wait for the conditions to occur first.

On the contrary, a system endowed with predictive capabilities can use the fol-
lowing rule: If the car in front of you is close to a crossing, then it is likely to stop,
so stop in advance or at least get ready to stop when a crossing is ahead. Thus, a
system endowed with predictive capabilities can take into account (possible) future
events to decide on and prepare current behavior.

Predictive capabilities permit even much more subtle behavior. Anticipatory sys-
tems can, for example, select an action whose anticipated effect is judged to be
positive, prevent dangers before experiencing them, actively search for information
that is expected to be relevant, etc. All these capabilities, that are based on process-
ing information relative to the future, are the keys for passing from mere reactivity
to proactivity and goal-oriented behavior.

1.2.3 The Anticipatory Approach to Cognitive Systems

By proposing the anticipatory approach to cognitive systems, we argue that—
now that the criticism of traditional AI from the situated approach is quite well
accepted—it is time to reconsider representations. However, these representations
need to be integrated into the situated approach to AI. That is, representations may
emerge out of representation-less systems and may suitably alter the capabilities of
the situated systems. Thus, representations may no longer be detached symbols, but
they will need to be grounded in the body’s sensory and motor systems and situated
in the perceived environment. Our strong belief is that such modern, behaviorally-
suitable representations can emerge from the anticipatory approach to cognition.
We therefore propose to focus on how anticipations are realized in living organ-
isms, and to investigate how anticipatory representations permit the realization of
cognitive functions.

The Mind Is an Anticipatory Device One central tenet of our anticipatory ap-
proach to cognition is that a true cognitive mind serves for (and has evolved for)
anticipation: The mind is an anticipatory device (Castelfranchi, 2005; Pezzulo and
Castelfranchi, 2007). Anticipation is not only required for several cognitive func-
tions, but it is an ‘ordering principle’ of cognition and its development. For this
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reason, the study of anticipatory phenomena can shed light onto natural cognition—
a view that is currently also gaining consensus in the neuroscientific community
(Bar, 2007; Frith, 2007; Hawkins and Blakeslee, 2004). For example, after review-
ing a number of memory studies and theoretical analysis, Schacter et al. (2007, pg.
660) concludes that:

Given the adaptive priority of future planning, we find it helpful to think of the brain as a
fundamentally prospective organ that is designed to use information from the past and the
present to generate predictions about the future.

There are two main reasons for conceiving cognitive minds as essentially antici-
patory and future-oriented. First, cognition should be described as an active and
productive activity rather than a passive stimuli-processing system. Second, rep-
resentational and symbolic capabilities were only able to develop due to adaptive
advantages of anticipating and dealing with the future. For this reason, the capa-
bility to form grounded representations and symbols depends on the capability to
anticipate. We illustrate these points in further detail in the two following sections.

1.2.3.1 The Productive View of Cognition

The productive view of cognition that we put forward in our anticipatory approach
originates from Kant’s (1998) idea that, although our knowledge begins with ex-
perience, it does not purely arise from experience, since our productive, generative
apparatus determines what we know. We do not passively process environmental
stimuli, but actively produce representations by means of our categorical apparatus.

That all our knowledge begins with experience there can be no doubt. [...] But, though all our
knowledge begins with experience, it by no means follows that all arises out of experience.
For, on the contrary, it is quite possible that our empirical knowledge is a combination of that
which we receive through impressions, and [additional knowledge] altogether independent
of experience [...] which the faculty of cognition supplies from itself, sensory impressions
giving merely the occasion. (Kant, 1998, Introduction)

This idea has been very important in the theory of Piaget (1954), that introduces as
an important element of novelty an emphasis on the situated and action-based origin
and nature of representations.

Any piece of knowledge is connected with an action . . . [T]o know an object or a happening
is to make use of it by assimilation into an action schema . . . [namely] whatever there is in
common between various repetitions or superpositions of the same action. (Piaget, 1971,
pg. 6-7)

Central in the Piagetian theory is the concept of schemas (or, better, sensorimo-
tor schemas), which is a highly recognized concept in cognitive science (Arbib,
1992, 2003; Bartlett, 1932; Neisser, 1976). He describes cognitive development in
humans as a process of assimilation and accommodation, in which schemas of in-
creasing complexity are formed to make sense of the world and to operate on it. A
central posit, which is generally adopted in schema-based computational modeling
(Arbib, 1992; Drescher, 1991; Pezzulo and Calvi, 2007b; Roy, 2005), is that acting
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on the basis of an action schema also entails the expectation of action effects. Ex-
pectations are crucial in the control of action and categorization—two sides of the
same coin—since the compliance of action implicitly verifies the expectations and
permits the categorization of an object or an event. Expectations are also used for
assimilation, that is, learning of a novel schema when current expectations are not
met (cf. Pezzulo and Calvi, 2007b for a further discussion on the relations between
the pragmatic and epistemic sides of action schemas).

The productive aspect of cognition is particularly important in cognitive, goal-
oriented agents. Contrary to the view that cognitive agents can be represented as
input-output devices that passively receive inputs for reacting appropriately, we ar-
gue that expectations precede stimuli, both factually and conceptually. Factually,
anticipatory representations are already there before inputs are received. Conceptu-
ally, a true goal-oriented behavior begins with a goal and not with a stimulus.

Recently a great deal of evidence has been accumulated that strengthens this
view. Bar (2007) proposes that the mind, thanks to associative mechanisms, is proac-
tive and continuously generates predictions approximating the relevant future—a
position that is consistent with the idea of the mind as an anticipatory device. Also
in accordance with the view put forward in this chapter, he suggests therefore that
anticipation is one (of the few) unifying principle(s) of brain functioning.

With a slightly different emphasis (on memory studies rather than proactivity and
goal orientedness), several authors have recently proposed that the essential function
of memory is not ‘storage’ but enabling dealing with the future. Some examples
are ‘mental time travel’ (Tulving, 1983), ‘memory of the future’ (Ingvar, 1985),
‘memory for the future’ (Glenberg, 1997), and the ‘prospective brain’ (Schacter
et al., 2007). All these studies highlight complementary aspects of the productive
view of cognition and indicate anticipation as a basic, unitary capability of cognition
that produces cognitive and behavioral effects.

1.2.3.2 The Mind Originates from the Need to Deal with the Future

We have reviewed evidence indicating that the organization of the perceptual and
motor apparatus is biased toward the future. However, here we do one more step and
suggest that the cognitive mind’s main function is to anticipate and to deal with the
future. In describing animals as machines evolved for the survival and propagation
of their genes, Dawkins (1989, pg. 59) argues that

Survival machines that can simulate the future are one jump ahead of survival machines
who can only learn on the basis of overt trial and error.

We have already discussed how anticipation permits the channelization of epistemic
and pragmatic activity. But there is another, perhaps more fundamental reason for
considering the role of anticipation as essential in the development of cognitive
minds: internal representations might have emerged from anticipatory mechanisms
such as internal models for the sake of dealing with the future.
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The Emergence of Representations from Anticipation What distinguishes a
cognitive from a merely adapted system is the capability to form internal repre-
sentations (and in particular expectations) and to work on them internally before, or
instead of, operating directly on the environment. Endogenously producing repre-
sentations, and working on them internally instead of immediately acting (Piaget’s
substitution) is a hallmark of cognition.

However, building an internal model before acting is costly. The knowledge-
based approach in AI has received criticisms by the situated approach, exemplified
by Brooks’s (1991) idea that ‘the world is the best representation of itself’, and
in theory, due to the frame problem that mines the idea that we can formulate a
symbolic representation of the world and possible actions before acting –and in fact
Dennett’s (1984) analogy with the Buridan’s ass illustrates the problems of model
based approaches.

One crucial challenge is then to understand how representations can arise in sit-
uated systems and how the cost of representation is balanced by appropriate gains.
It is extremely advantageous for a situated system to be able to deal with the future
and not only the present. An anticipation of the future implies gains in specific cog-
nitive functions such as attention and motor control as well as the development of
completely new capabilities such as planning (we review extensively the benefits of
anticipation in Chapter 3).

Thus, representations might have originated thanks to the need for dealing with
the future, for which the direct way is to predict and represent the future. In turn,
representing the future and detaching one’s own representations from the current
sensorimotor interaction might have provided several other advantages. Represent-
ing the future, including future events, our own actions in the future as well as
other’s actions, is essential for coordinating one’s own acts for a long time span, for
coordinating with others, for realizing future states that are desirable (this includes
controlling others), or for avoiding dangerous futures.

Another related (and not concurrent) hypothesis is put forward by König and
Krüger (2006) who argue that discrete entities (symbols) emerge in the brain in the
process of feature extraction as a byproduct of data compression for the sake of
permitting better predictions:

In the process of mutual optimization of features and predictions, symbols emerge as con-
densed entities on which predictions are performed. (König and Krüger, 2006, pg. 14)

In a similar vein, several researchers stress the role of anticipation in the develop-
ment of cognitive capabilities, from the simplest sensorimotor ones to more com-
plex and symbolic ones such as language (Clark and Grush, 1999; Gardenfors and
Orvath, 2005; Grush, 2004).

Several studies in cognitive robotics are now beginning to investigate anticipa-
tion from a situated perspective. Although they mainly focus on the control of action
and basilar social abilities so far, this direction seems very promising to scale up to
higher level cognitive and social functions. Understanding the nature and function-
ing of anticipatory behavior in unitary perspective will be, however, a big theoretical
challenge since anticipatory representations have a double-sided nature, being both
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grounded and detached. According to the situated approach to cognition, represen-
tations have to be grounded (Harnad, 1990): An agent can only act adaptively if
it stays intimately coupled with its environment. At the same time, representations
and especially expectations and distal goals are by definition about future states of
affairs (sometimes even impossible ones), and they are therefore detached from the
current sensorimotor engagement. Thus, groundedness and detachment seem to be
at odds: how can both be obtained?

The answer can come from an investigation, in a developmental perspective, of
the detachment process that permits to develop anticipatory representations start-
ing only from sensorimotor engagement: representations are not born detached, but
become detached. The reviewed literature offers some indications about possible
stages of the detachment process. Accordingly, several authors (Clark and Grush,
1999; Grush, 2004; Pezzulo and Castelfranchi, 2007) propose that internal mod-
els permitting to emulate the external reality are firstly developed for the sake of
action control. Once established, they are exapted (i.e., used for a function other
than that for which it was developed) for bootstrapping increasingly complex func-
tionalities such as simulative planning and pursuing distal goals. The diversity of
anticipatory capabilities existing in nature thus depends on a progressive process
of disengagement from the current sensorimotor cycle, enabled by progressively
detached anticipatory representations. Since this process exploits an ‘inner simu-
lation’ mechanism, however, anticipatory representations remain intimately related
to situated action and maintain its nature (Barsalou, 1999; Damasio, 1994; Grush,
2004; Hesslow, 2002). The same process can also be in place for social cognition,
since anticipatory mechanisms for engaging in future-oriented and social-oriented
activity share the same neural substrate.

Consistently, Clark and Grush (1999) put forward the challenge of understanding
the anticipatory aspects of cognition in a naturalistic framework, and as originating
from situated action. They argue that a crucial step toward truly cognitive robotics
is reframing the concept of representation in a situated and embodied perspective.
They propose that anticipation is the key element, and anticipatory mechanisms
(in particular simulative mechanisms) are responsible for bootstrapping grounded
representations:

agents [that genuinely cognize their worlds] are able to substitute inner dynamics for on-
going environmental stimulation, and command adaptively valuable inner spaces that they
use to sculpt and modulate their more direct engagements with the world. It is these ‘Carte-
sian Agents’ we believe, that must form the proper subject matter of any truly cognitive
robotics. Clark and Grush (1999, p. 13)

Grush (2004) has put forward this idea and proposed the emulation theory of repre-
sentation: the most comprehensive account nowadays on how representation origi-
nates from anticipatory mechanisms that can be used online for action control and
re-enacted off-line for enabling a number of sophisticated cognitive capabilities such
as visual imagery, reasoning, theory of mind phenomena, and language. A con-
ceptual analysis of the passage from sensorimotor skills to higher level cognitive
capabilities based on anticipation can also be found elsewhere (Gardenfors, 2003;
Hurley, 2005; Pezzulo and Castelfranchi, 2007; Pezzulo, 2008a).
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Representations Are Grounded Because They Remain Related to Prediction
If we assume that representations arise for prediction, and continue to depend func-
tionally on prediction, we can understand them in a novel perspective, that is inti-
mately related to situated action. One definition that is compliant with this view is
provided by Bickhard and Terveen’s (1995) interactivism: representations are ways
for setting up indications of further interactive potentialities, and thus serve for fu-
ture interactions. A related view is Smith’s (1996) intentional dance.

An example of robotic implementation of the Piagetian, constructivist approach
to the formation of object representations can help illustrate this point. In the study
by Drescher (1991) concepts for objects are developed autonomously on the basis
of (actual or expected) interaction effects. Objects (called synthetic items) are not
provided to the agent but ‘discovered’, or better postulated, as a common cause
of the expected success of a number of actions; objects are then explanations of
sensorimotor patterns. If the agent moves its hand to the left and touches (or expects
to touch) a surface, or moves its eyes to the left and sees a circular shape, etc., it
can postulate that there is a common cause in all these behavioral effects and then
‘create’ a synthetic item. Later on, it can predicate based upon this item for forming
more complex representations, including action representations.

In a similar vein, Roy (2005) has proposed that concepts for objects, which are,
for example, reachable or graspable, are grounded by object schemas (similar in
spirit to synthetic objects), which regulate actual behavior and at the same time
encode predictions on the consequences of an expected interaction. One advantage
of this framework is that schemas for actions, objects, and linguistic symbols share
the same representational basis and have demonstrated to be successful in complex
cognitive tasks such as robot control and linguistic communication.

This approach has implications for the symbol grounding problem as well. Roy
(2005) has proposed that it depends on two mechanisms relating agent and environ-
ment: causation (from environment to agent) and anticipation (from agent to envi-
ronment). Representations, including goal representations, are thus grounded thanks
to the circular causality of ACTION + EXPECTATION and OBSERVATION + CAUSA-
TION. This circular mechanism could also explain how we attribute causality: it is
our productive apparatus that permits the reading of events in the world as causally
(instead of simply statistically) related, which is essentially the Kantian solution to
the problem of causality.

From a philosophical point of view, this approach can solve the problem of how
to justify representations without falling in the grounding problem. On the one side
we want to highlight the role of representational, anticipatory processes in cognitive
agents, but on the other side we need a naturalistic account for representations that
is entirely compatible with situated and embodied approaches to cognition. This
point is illustrated nicely in Clark’s (1998) minimal representationalism: “Minds
may be essentially embodied and embedded and still depend crucially on brains
which compute and represent.”
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1.2.4 The Unitary Nature of Anticipation

Overall, we have illustrated how several conceptual frameworks have been devel-
oped that indicate anticipation as a key element for cognition and for the devel-
opment from simpler to more complex cognitive capabilities. As a conclusion to
this section, we want to stress one of the innovative aspects of the anticipatory ap-
proach to cognition. Notwithstanding the fact that anticipation has multiple facets
and has multiple realizations in brains and behaviors, we believe that it has to be
considered a unitary phenomenon, a hallmark for natural and artificial cognition.
Consistently with the idea of a cognitive mind as an anticipatory device, we argue
that anticipation is inherently involved in—and in many cases a necessary condition
for—several cognitive functions. Once a cognitive mind has evolved the power to
deal with the future, this opens the possibility of an entirely new set of capabilities
and opportunities, and it can realize proactive and goal-oriented behavior.

For this reason, we believe that a real understanding of the phenomenon of antic-
ipation will come from a study of its unitary aspects rather than (or, better, together
with) its different realizations, behavioral and neural. Our objective is then to pro-
vide a unitary perspective on the study of cognition and its development by focusing
on anticipation and, more in general, on the capability and need to deal with the fu-
ture. In the rest of the book we pursue this objective in several ways: We provide
adequate definitions and taxonomies that help highlight the unitary aspects of pre-
diction and anticipation, and we analyze the powers and limitations of anticipation
in natural and artificial cognition, also providing a number of examples.

Since our analysis is grounded in biological and psychological evidence, we now
proceed with reviewing evidence for anticipatory phenomena in cognition, both in
simple and complex organisms, and we illustrate a unifying view of natural cogni-
tion based on anticipation.

1.3 Anticipation in Living Organisms

Besides the conceptual perspective on AI research progress, that is, from symbols,
to reactivity and situatedness, back to combinations of these mediated by anticipa-
tory mechanisms, there is also a biological, psychological perspective that strongly
points toward the ubiquity of anticipatory mechanisms in animals and humans.

Several converging directions of empirical research indicate a crucial role for an-
ticipatory mechanisms in cognitive functions. These mechanisms range from sim-
ple, such as sensorimotor coordination, to highly complex, such as decision making
in social domains, social imitation and learning, or communication. In this section,
we review biological and psychological evidence for anticipatory mechanisms in
the brain and the consequent behavioral capabilities of animals and humans.

1.3.1 Anticipatory Natural Cognition

Several animal and human capabilities require an estimation of future states of af-
fairs for compensating the dynamicity of the environment: for example, the motor
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preparation of the prey-catching behavior of the jumping spider (Schomaker, 2004)
or balancing a pole with one hand (Mehta and Schaal, 2002). It has even been pro-
posed that all motor control is mediated by anticipatory information, which is gen-
erated by internal predictive models that permit the emulation of the environment
(Doya, 1999; Kawato, 1999; Wolpert et al., 1995).

Visual attention is also greatly influenced by expectations, as testified by classic
experiments. Yarbus (1967), for example, showed that a visual scene is scanned dif-
ferently depending on the observer’s intentions. This influence of expected stimuli
for orienting attention has been reported not only in humans, but also in pigeons
(Roitblat, 1980) and monkeys (Colombo and Graziano, 1994). The constructive and
active aspects of perception, and in particular the top-down influences, are discussed
in detail in Engel et al. (2001). On this basis, models of the visual apparatus includ-
ing (hierarchical) predictions have been proposed such as predictive coding (Rao
and Ballard, 1999) and prospective coding (Rainer et al., 1999).

More complex anticipatory capabilities, which are referred to as ‘simulative’,
permit the prediction and processing of expected stimuli in advance. For example,
Hesslow (2002) describes how rats are able to ‘plan in simulation’ and compare
alternative paths in a T-maze before acting in practice. Simulation can also be used
for the prediction of danger. Damasio (1994) argues that during decision making
humans engage in ‘what-if’ simulated loops of interaction with the environment in
order to evaluate in advance, via somatic markers, possible negative consequences
of their actions.

Constructivists such as Piaget (1954) have argued that sensorimotor schemas,
which enable the prediction of action effects, are progressively developed by means
of an active exploration and interaction with the environment, leading to under-
standing and categorization. The view of situated activity as the basis of cognition,
including conceptualization, has been recently revitalized and ‘motor’ approaches
are gaining popularity. One piece of evidence that understanding comes from activ-
ity and exploration comes from an experiment performed by Held and Hein (1963):
Kittens that were unable to move autonomously in the environment (i.e., those being
only passively moved) failed to categorize it correctly, being, for example, unable
to avoid cliffs, which shows that they did not develop appropriate depth perception.
On the other hand, kittens that were raised similarly (they essentially had nearly
the same perceptual input) but that had the possibility to move showed successful
categorization and depth perception.

1.3.1.1 Anticipatory Human Cognition

We humans are able to perform a plethora of anticipatory mechanisms that seem
to go far beyond the capabilities of other species. We are the “symbolic species”
(Deacon, 1997), which was able to develop language and rather complex social
structures and cultures. Some interesting examples of these capabilities include:



14 G. Pezzulo et al.

• We can formulate novel goals and plan in view of future needs (this includes
abstract and distal ones such as having fun or becoming famous). The possibility
to anticipate oneself could have lead to the capability to coordinate one’s own
actions in the present and in the future, and to have a sense of ‘persisting self’.

• We can formulate expectations at an increasingly high level of abstraction and
can use these to regulate our actions. For example, we can decide whether or not
to apply for a job depending on our expectations about the satisfaction it will
provide us, the salary, the free time, the success, etc. Not only can we formulate
such abstract expectations, but we also can ‘match’ them with imaginary futures
and select among them (albeit often only with a certain degree of success).

• We are capable of substitution (Piaget, 1954), that is, to manipulate mentally our
representations before or instead of acting in practice. Probably several animal
species are able to use their internal models of phenomena for making mental
manipulations, but we humans are able to use that ability systematically. A me-
chanic can assemble and dismantle a motor in his mind before doing it in prac-
tice. An architect can propose different plans for restructuring a house. Thanks to
anticipation it is possible to deal with entities also when they are not present as
stimuli: an ability that is crucial for defining an agent’s autonomy (Castelfranchi,
1995).

• We can heavily modify and adapt the environment to ourselves, not only vice-
versa. While other species adjust their representations to fit the actual world, we
often act in the world in order to make it fit our representations of what we want,
that is, our goals. Several animal species have the capability to adapt their envi-
ronments, such as building a nest, but typically they do that in a very stereotypic
way. We humans do not have this limitation and have heavily modified our en-
vironment to fit our present and especially future goals (Gardenfors and Orvath,
2005; Pezzulo and Castelfranchi, 2007).

• We can imagine ourself in the future and reason about possible futures. Tulving
(2005) has argued that the capability to engage in ‘mental time travel’ in the past
and the future is a uniquely human capability. Although this view has been ques-
tioned, and it might be the case that this capability is also available to other ani-
mal species to a certain degree (see e.g. Hesslow, 2002), humans can use mental
simulation with unchallenged flexibility. Moreover, recent neurobiological stud-
ies (see Schacter et al., 2007 for a review) indicate that the process of imagin-
ing future events involves the same brain structures that are necessary to form
episodic memory traces. This suggests a novel view of memory, whose main
adaptive advantage could be providing building blocks for mental simulation
and not (only) remembering. This fact could explain the constructive nature of
memory: what is needed to imagine the future is the capability to flexibly recom-
bine information from the past rather than simply replaying the past. Although
this view is quite novel in psychology and neuroscience, the relevance of men-
tal simulation is highlighted by several research programs, including prospection
(Buckner and Carroll, 2007), episodic future thinking (Atance and ONeill, 2001),
memory for the future (Ingvar, 1985), and the prospective brain (Bar, 2007).
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• Our highly sophisticated social life appears to rely on anticipatory capabilities as
well, such as coordination and cooperation, perspective taking, imitation, theory
of mind, and language (Knoblich et al., 2005; Frith and Frith, 2006; Gardenfors
and Orvath, 2005; Iacoboni, 2003; Rizzolatti and Arbib, 1998).

• We have developed symbols and a symbolic language. Various researchers (Ar-
bib, 2002; Gardenfors, 2003; Gardenfors and Orvath, 2005; Swarup and Gasser,
2007) have recently discussed how anticipation is a precursor to symbolic com-
munication and permits the evolution of symbols, and then the development of
humans as the symbolic species (Deacon, 1997).

• Gallese’s (2001) Shared Manifold Hypothesis and Hurley’s (2005) Shared Cir-
cuits Hypothesis describe how anticipation is essential for bootstrapping capabil-
ities in the individual and especially social sphere. Both describe several evolu-
tionary steps necessary for the development of our current cognitive and socio-
cognitive capabilities.

This small list could be expanded at will and only intends to point out how ubiq-
uitous anticipatory mechanisms appear to control and guide our behavior and cog-
nition in general. We now proceed with considering concrete neuroscientific and
psychological evidence for anticipatory behavior in animals and humans and how
such behavior may come about.

1.3.2 Anticipatory Codes in the Brain

What is the neural substrate of these forms of anticipatory behavior? Is there a
unique way to predict, or are there many? Are neural substrates for predictions
shared among species? Are there specific brain structures that mediate complex
forms of anticipation in mammals and in the human brain? Notwithstanding the
fact that several aspects are still obscure, the empirical literature is huge, and cog-
nitive psychology and neurobiology continue to unravel mechanisms and processes
based on anticipation in humans and other animals. We refer to Fleischer (2007) for
a recent, excellent overview of anticipatory mechanisms in the mammalian brain
and to Hoffmann (2003) for an extensive survey of the psychological literature.

Here, we instead try to summarize and systematize the empirical findings of an-
ticipations with respect to the neural codes that could be involved in generating
expectations—for the sake of discussing the implications of these findings on the-
oretical models. We can distinguish among two main kinds of anticipatory neural
codes that can perform action anticipation and goal prediction. The former focuses
on associative links and the latter on generative mechanisms and internal simulation
(see Csibra and Gergely, 2007 for a comparison of these mechanisms with teleolog-
ical reasoning).

1.3.2.1 The Ideomotor Principle and Associative Learning

The first proposal that the brain includes neural codes that relate expectations to ac-
tion was formulated in the ideomotor principle (Herbart, 1825; James, 1890), which
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has recently received a number of empirical confirmations from psychological stud-
ies (Hommel et al., 2001; Kunde et al., 2004, 2007; Prinz, 2005). It has been pro-
posed that an agent can learn to predict the outcomes of its actions and then store
ACTION → EXPECTATION (A-E) (a.k.a. ACTION → EFFECT (A-E)) associative
links, which may be neurally specified thanks to a common neural coding between
perception and action (Prinz, 1990, 2003)1.

What is relevant here is not only that anticipation is deeply integrated with ac-
tion representation but that expectations can be used for triggering action. ACTION

→ EXPECTATION (A-E) sensorimotor codes, once learned, can be ‘inverted’ and
become EXPECTATION → ACTION (E-A) links, which permit the activation of an
action by its (desired) effects (Hommel, 2004). The relevance of this mechanism
consists in its possibility to account for goal-directed actions in a simple and ele-
gant way, since a desired (predicted) effect, and not a stimulus, is responsible for
triggering an action.

Another account of prediction based on associative mechanisms is put forward
by Bar (2007). Thanks to the similarity between past and novel stimuli, analogies are
established that trigger prediction on the basis of associations that capture the most
frequent trends in the stimuli. This kind of predictive mechanism is then of the type
STIMULUS → STIMULUS and not ACTION → EXPECTATION. These association-
based predictions permit the forecasting of what is more likely to happen in the
same context, to preventively set up appropriate actions, and to enable priming (per-
ceptual, semantic and contextual, see, for example, Anderson, 1983).

1.3.2.2 Generative Mechanisms: Internal Models

It has been argued that the brain uses internal models, which mimic the behavior of
external processes, for motor control of action (Doya, 1999; Kawato, 1999; Wolpert
et al., 1995). In particular, forward models permit the generation of expectations
about the next sensed stimuli, given the actual state and motor command. We can
further distinguish between forward sensory models (STATE + ACTION → SEN-
SORY FEEDBACK) and forward dynamic models (STATE + MOTOR COMMAND →
FUTURE STATE).

Inverse models (or controllers) instead take as input actual stimuli and the goal
state and provide as output the motor commands necessary to reach the desired
state. Taken together, inverse and forward models permit not only the performance
of motor plans but also the control of it and in general the regulation of its behavior
in noisy and dynamic environments.

Internal models permit an agent to run an ‘inner sensorimotor loop’ that parallels
actual sensorimotor interaction as shown in Fig. 1.1. This inner loop is extremely

1 Since in principle, several effects could be associated with an action, to be efficient, this mech-
anism needs a guarantee that those effects stored are the only relevant ones, such as those effects
originating systematically from the same action, the effects that are rewarding, etc. Since associa-
tive mechanisms do not have internal states, this may come only from simple associative forms of
learning such as Hebbian learning—see, for example, Butz, 2002a and Drescher, 1991 for princi-
pled design approaches to tackle this problem.
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useful for regulating motor control. For example, it can compensate for delays in
sensory feedback and cancel the self-produced part of the input from sensory stimuli
(Blakemore et al., 1998), etc. Empirical evidence is reported for a role of internal
models in visuomotor tasks (Mehta and Schaal, 2002), eye movements (Shidara
et al., 1993), imagery (Jeannerod, 1994), motor execution (Wolpert and Flanagan,
2001), and sensorimotor learning (Wolpert and Flanagan, 2003). It is worth noting
that internal models could provide support for anticipation at different time scales
and granularity, for which hierarchical models of action control and recognition over
time have been proposed (Haruno et al., 2003; Johnson and Demiris, 2005a).

Fig. 1.1 Left: an agent engaged in sensorimotor interaction with its environment. Right: an agent
running an ‘inner sensorimotor loop’ which parallels actual interaction.

One advantage of this model from the computational point of view is that it is rooted
in standard control theory, and has parallels with the concepts of Kalman filtering
(Kalman, 1960). Another advantage is that it provides a unitary view of anticipation
in the brain, suggesting that a unique mechanism could mediate action performance,
understanding, and imitation, as well as event understanding.

1.3.2.3 Generative Mechanisms: Compact Coding

Predictive coding is an account of the functional architecture of the brain that origi-
nates from Helmholtz’s models of perception. It is based on the idea that the sensory
brain has a hierarchical structure that has evolved to represent or infer the causes of
changes in its sensory inputs (Friston, 2005, 2003; Kilner et al., 2007). It actively
does that by means of generative mechanisms that actively predict the input, bias
further processing in a top-down manner, and are modulated by bottom-up feed-
back. This approach has the advantage of being able to integrate cybernetic models
of prediction (based on empirical Bayes, Kalman filters, etc.) into a well accepted
biological framework.

Besides the further reaching predictive capabilities of such models, though, com-
putational models support this proposition, such as a bidirectional, hierarchical vi-
sion architecture, proposed by Rao and Ballard (1999). In this architecture, a higher
layer includes ‘concurrent perceptual hypotheses’ that convey priors and modulate
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the lower layer. In turn, the lower layer sends back prediction error to higher layers
as a result of a match or mismatch of perceptual actions.

Several related generative models, such as Bayesian systems and Boltzmann ma-
chines, have been used in vision, speech processing, sensorimotor integration, action
execution and understanding, and decision making (cf. Dayan et al., 1995; Friston,
2005; Hinton and Dayan, 1996; Kording and Wolpert, 2006; Weber et al., 2006;
Wolpert et al., 2003; Yuille and Kersten, 2006).

1.3.2.4 The Case of Mirror Neurons

Besides such strongly sensorimotor models, recent evidence suggests the presence
of a mirror neuron system in monkeys and humans. This neural system was orig-
inally discovered in the ventral premotor cortex (F5) of macaque monkeys, where
goal-oriented actions are encoded that are either performed by oneself or only vi-
sually observed while being performed by others (Rizzolatti et al., 1996; Rizzolatti
and Craighero, 2004). Recently it has been shown that mirror neurons respond to
action goals rather than to their surface characteristics, that is, ‘ends’ rather than
‘means’ (Umiltà et al., 2001), also the case with distal goals (Fogassi et al., 2005).
This fact suggests a way to understand (and possibly imitate) not only other people’s
movements, but also actions and intentions (a model along those lines was proposed
in Meltzoff and Moore, 1997).

Mirror neurons show the remarkable capability to encode the prediction of the
goal of an action, both performed by self and others, using a single neural circuit.
This fact has suggested the possibility of breaking the boundaries between the indi-
vidual and the social spheres (Gallese et al., 2004), and lead to several suggestions
that the mirror system may be involved in a number of socio-cognitive functions
such as action understanding, imitation, language (Iacoboni, 2003; Rizzolatti and
Arbib, 1998), as well as empathy (Gallese, 2001).

For the sake of our analysis, this fact is particularly relevant since it demonstrates
that the same anticipatory mechanisms could be used for goal-oriented actions as
well as for action understanding and imitation, so that future-oriented and socially-
oriented functions can share the same neural basis (Decety and Chaminade, 2003;
Iacoboni, 2003; Jeannerod, 2001).

1.3.3 Simulative Theories of Cognition, and Their Unifying
Nature

Recent research on anticipatory and in particular generative mechanisms in the brain
has revitalized so-called ‘motor’ or ‘simulative’ views of cognition, which highlight
the role of the motor apparatus in all aspects of cognition, ranging from situated
actions to high level cognitive capabilities. Simulative theories of cognition indicate
that internal mechanisms used for action monitoring and control can be re-enacted
for generating long term expectations and ‘covert’ simulation of overt behavior
(Cotterill, 1998; Grush, 2004; Hesslow, 2002). At the same time, other cognitive
phenomena such as understanding and imitating actions performed by others, rea-
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soning, theory of mind, and language can be accommodated within the same theo-
retical framework (Blakemore and Decety, 2001; Frith, 2007; Gallese, 2001; Gallese
et al., 2004; Iacoboni, 2003; Jeannerod, 2001; Kilner et al., 2007; Rizzolatti et al.,
2001; Wolpert et al., 2003). Anticipatory representations produced by anticipatory
mechanisms can then be used in action preparation, execution, control, and mental
action simulation.

Central to this family of models is the concept of internal simulation, emula-
tion, or re-enactment. This productive aspect, which distinguishes simulative theo-
ries from similar views based on associative mechanisms, is now gaining relevance
in the literature of mirror neurons (Gallese and Goldman, 1998; Oztop et al., 2006;
Rizzolatti et al., 2001) and internal models (Doya, 1999; Wolpert et al., 2003).

According to (Gallese, 2000):

To observe objects is therefore equivalent to automatically evoking the most suitable motor
program required to interact with them. Looking at objects means to unconsciously ‘sim-
ulate’ a potential action. In other words, the object-representation is transiently integrated
with the action-simulation (the ongoing simulation of the potential action).

Hesslow’s (2002) simulative theory of cognition describes thinking as ‘covert’ be-
havior. In this sense, anticipatory capabilities permit the re-enactment of motor pro-
grams required for situated interaction. For this reason, there is no gap between the
sensorimotor and the cognitive mechanisms that enable behavior. Hesslow (2002)
suggests the following three aspects:

(1) Simulation of actions: we can activate motor structures of the brain in a way that resem-
bles activity during a normal action but does not cause any overt movement. (2) Simulation
of perception: imagining perceiving something is essentially the same as actually perceiving
it, only the perceptual activity is generated by the brain itself rather than by external stim-
uli. (3) Anticipation: there exist associative mechanisms that enable both behavioral and
perceptual activity to elicit other perceptual activity in the sensory areas of the brain. Most
importantly, a simulated action can elicit perceptual activity that resembles the activity that
would have occurred if the action had actually been performed.

Related views are put forward by Grush (2004) and Barsalou (1999) under the
names of ‘emulation’ and ‘simulation’ theories of cognition, respectively. These
authors suggest two comprehensive attempts to integrate a plethora of cognitive
functions, such as motor control, reasoning, theory of mind phenomena, and lan-
guage, under the same framework that emphasizes the productive aspects of cogni-
tion. These aspects are generated by the capability of the mind to construct models
of its environment that can be re-enacted and run either on-line or off-line.

1.3.3.1 Kinds of Internal Simulations and Simulative Theories

While several theories have been proposed as “simulative”, the authors are refer-
ring usually to different aspects of a “simulation” and to different mechanisms for
producing simulations. One important distinction is among mental simulation in the
sense of off-line processing, or ‘covert’ behavior, as highlighted elsewhere (Blake-
more and Decety, 2001; Grush, 2004; Hesslow, 2002), and mental simulation as
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the cognitive basis of social skills such as imitation and mind reading (Gallese and
Goldman, 1998).

Similarly, Decety and Grèzes (2006) distinguish among several kinds of simu-
lative approaches, which differ in level of access (automatic vs. conscious) and in
scope (motor aspects vs. more complex cognitive states). One view is conscious
reactivation of previously executed actions stored in memory (Decety and Ingvar,
1990), which can also be chained for producing long-term expectations (Cotterill,
1998; Hesslow, 2002) and ‘simulate’ overt behavior. Another view stresses the role
of unconscious activation of several aspects of action, including its goal, the means
to achieve it, and its consequences (Jeannerod, 1999, 2001): all these representations
belong to the covert phase of motor preparation and can be reused for observing
actions performed by others. The third view is related to the simulation-theory in
philosophy of mind (Goldman, 2005) and explains the capability of understanding
other’s mental states—including beliefs, desires, and feelings—with the capability
to “put ourselves into the other one’s shoes” by simulation. It is possible that only
some of these mechanisms can be used for generating long-term predictions, which
can be used off-line, that is, detached from the current sensorimotor context.

Notwithstanding the differences between the approaches, and assuming that the
brain could have alternative ways to simulate and emulate, this book focuses on the
understanding of the unitary nature of motor and simulative theories of cognition.
Simulative mechanisms, in fact, have been claimed to be involved in a plethora of
individual and social cognitive functions such as perception, action performance and
understanding, decision making, imitation, intentionality, etc. and have the potential
to provide a unitary approach.

1.3.3.2 Action Performance, Understanding, and Imitation with a Unique
Mechanism

Simulative theories of cognition, which usually stress the role of anticipatory, gen-
erative mechanisms, challenge traditional models of cognition, in which perception
and action as well as the individual and social spheres are separated domains. Sim-
ulative theories provide means to integrate these domains with perception and ac-
tion. This fact is extremely relevant because both it suggests a suitable engineering
methodology and it has a solid biological basis.

Decety and Grèzes (1999) as well as Jeannerod (1999) show that there is a com-
mon neural substrate between action production and imagination—evidence that
suggests functional equivalence. For example, mirror neurons, shared neural repre-
sentations, and simulative processes have been argued to be involved in imitation
(Iacoboni, 2002; Meltzoff and Decety, 2003), distinguishing the self from others
(Decety and Chaminade, 2003), mind reading (Gallese and Goldman, 1998), and
language production and understanding (Rizzolatti and Arbib, 1998). These facts
have suggested that simulative mechanisms can explain individual and social ca-
pabilities in a unique framework. Three related problems that are inferring which
action to perform for achieving a desired goal could be realized by the same mecha-
nism. Several authors argue that generative mechanisms for controlling actions can
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be reenacted endogenously for perceiving, understanding, and imitating actions per-
formed by other agents in order to understand behavior and to infer intentions from
observed actions (Blakemore and Decety, 2001; Gallese, 2001; Gallese et al., 2004;
Iacoboni, 2003; Jeannerod, 2001; Kilner et al., 2007; Rizzolatti et al., 2001; Wolpert
et al., 2003).

According to Rizzolatti and Arbib (1998, pg. 190): “Individuals recognize ac-
tions made by others because the neural patterns elicited in their premotor areas
during action observation are similar to that internally generated to produce that
action”. Imitation can consist in the re-enactment of the internal generative models
that better fit the observed agent’s goal, providing that it is in the motor repertoire of
the imitating agent (Demiris and Khadhouri, 2005; Demiris, 2007; Iacoboni, 2002,
2003).

Anticipatory Mechanisms for Generating Different Kinds of Predictions Are
there unitary mechanisms in the brain for producing simulations, or not? Predictions
of different kinds (rewards, sensory, different state predictions) may require different
mechanisms, and the same can be true for predicting one’s own actions and exter-
nal events. However, there could be anticipatory mechanisms that can flexibly learn
to generate different kinds of predictions. One example are forward models, which
have been proposed to be involved in the prediction of events, both self-generated
and external. Schubotz (2007) distinguishes among prediction of events that we can
or can not reproduce. Consider as an example of the first case observing the action
of walking, and of performing an highly skilled action such as juggling (assuming
that we are not able to juggle). In the former case we can use (re-enact) our own sen-
sorimotor system in order to predict possible effects of other’s actions. In the latter
case, since our behavior repertoire does not include juggling, our internal models
are only able to provide us with partial sensory information. However, as Schubotz
(2007, pg. 216) claims,

Forward models for events are not categorically different from forward models for actions.
Forward models for events are just a fraction of forward models for actions, a fraction that
misses the full-blown interoceptive and exteroceptive description of action models.

1.3.3.3 Anticipatory Action Control and the Sense of Agency

Anticipation must thus enable not only the simulation of individual and social
spheres, but also the distinction of the two. If the same neural states are involved
both in action performance and in other’s action recognition—consequently being
engaged in a ‘we-space’ (Gallese, 2001)—how do we distinguish ourselves from
others?

The development of a sense of agency, which permits the understanding the self-
attribution of the effects of (our own) actions, has been discussed by Piaget (1954)
and Meltzoff and Moore (1997). They suggest that children learn the ‘boundaries of
their prediction’ and thus develop a body scheme.

A comprehensive theoretical framework that relates anticipation, and in partic-
ular internal models, to agency has been recently proposed by Frith et al. (2000).
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They discuss how the failure to access anticipatory signals that are produced during
motor control (e.g., efference copies of motor commands) produces deficits in the
sense of agency, and thus conclude that awareness of those anticipatory signals is
essential to be able to correctly self-attribute an action or an intention. Along the
same lines, Pacherie (2007) discusses the phenomenology of first person agency in
terms of simpler experiences: intentional causation, the sense of initiation and the
sense of control, all dependent on anticipation.

1.4 Conclusions

This introductory chapter has given an overview of different facets of anticipations
and anticipatory behavior from a cognitive science perspective. We have introduced
anticipation and anticipatory behavior from the theoretical point of view, we have il-
lustrated how anticipatory mechanisms enable a range of anticipatory capabilities in
natural cognition, and we have argued that anticipation is a unitary and foundational
phenomenon in cognition, and ultimately that a cognitive mind should be conceived
as a future-oriented device.

It has been put forward that goal-oriented systems inevitably need to have an-
ticipatory goal representations to be able to control goals flexibly and adaptively.
To learn such goal-based control structures, forward and inverse models need to be
learned. Forward models allow the anticipation of a reachable goal and its activa-
tion triggering suitable motor commands with parallel inverse models. Moreover,
forward models give rise to many more predictive capabilities, such as the capabil-
ity of goal-inference represented in mirror neurons. The inference options strongly
depend on the level of abstraction and modularity with which environmental states
and circumstances are represented in the brain. The capability of long-term forward
model predictions and goal-oriented behavior needs to reach a symbolic level in
order to accomplish the flexibility and determination observable in humans.

Besides these strong planning capabilities, forward simulation also allows the de-
velopment of self, since motor commands lead to the most reliable sensory effects.
Thus, motor commands allow an accurate and reliable representation of motor-
dependent forward models. In later developmental stages then, these forward models
are used and mirrored to understand the agency of others and in effect, their current
intentionality and even emotional state, leading to the capability of language and
empathy (Arbib, 2002; Gallese, 2001; Gallese et al., 2004).

In conclusion, we propose again that a crucial challenge for cognitive systems
research is to understand the passage from reactive to anticipatory natural cognitive
systems, and to do the same thing in the realm of artificial cognitive systems. For
the design or artificial cognitive systems, however, it does not seem to be sufficient
to simply program a simulative system that uses its predictive capabilities for goal
selection, imitation, motor control, reasoning, etc. Rather, the discussed different
facets of anticipation need to be pinpointed and then modularly structured, as the
brain does. Thus, the next chapter proposes an overarching, modular taxonomy of
anticipatory mechanisms and their purpose to yield effective, flexible, and adaptive
cognitive agents.



Chapter 2
The Anticipatory Approach: Definitions and
Taxonomies

Giovanni Pezzulo, Martin V. Butz, and Cristiano Castelfranchi

The value of a symbol is that it serves to make thought and conduct rational and enables us
to predict the future. Charles Sanders Peirce

The anticipatory approach that we propose consists in understanding and conceptu-
alizing anticipation and anticipatory behavior in natural cognition and implementing
them in artificial systems. We propose that anticipatory systems have capabilities
that go far beyond those of purely reactive ones and that anticipation is a prerequi-
site for several cognitive functions, and in general for goal-oriented behavior.

Consequently, in this chapter we first provide definitions for anticipation and an-
ticipatory behavior (Section 2.1). We then classify and distinguish different types
and aspects of predictive and anticipatory mechanisms (Section 2.2). Next, we clas-
sify anticipatory mechanisms in goal-oriented behavior (Section 2.3) and finally
distinguish anticipatory mechanisms in learning structures (Section 2.4).

The classifications put forward in this chapter are meant to clarify what antici-
patory mechanisms are and how they can influence cognitive systems’ behavior and
learning. Chapter 3 then reviews the potential benefits of anticipatory mechanism
and also discusses potential drawbacks. In the subsequent chapters, we then take the
artificial systems perspective and put forward the requirements and the capabilities
of currently available anticipatory cognitive systems.

2.1 Anticipatory Systems, Anticipation, and
Anticipatory Behavior

Although anticipations and predictions are often used nearly as synonyms in natural
language, in scientific realms there is a clear distinction between predictive systems
and anticipatory systems. Generally, anticipatory systems are those that use their
predictive capabilities to optimize behavior and learning to the best of their knowl-
edge. Rosen (1985, ch. 6) might have been one of the first who put this idea into a
useful definition. An anticipatory system is:
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[...] a system containing a predictive model of itself and/or its environment, which allows
it to change state at an instant in accord with the model’s predictions pertaining to a latter
instant.

More precisely, he also states that

An anticipatory system S2 is one which contains a model of a system S1 with which it
interacts. This model is a predictive model; its present states provide information about
future states of S1. Further, the present state of the model causes a change of state in other
subsystems of S2; these subsystems are (a) involved in the interaction of S2 with S1, and
(b) they do not affect (that is, are unlinked to) the model of S1. In general, we can regard
the change of state in S2 arising from the model as an adaptation, or pre-adaptation, of S2
relative to its interaction with S1.

The most peculiar aspect of anticipatory systems is thus their dependence on (pre-
dicted) future states and not only on past states. Although the definition provided
by Rosen may be too strong (it excludes systems that coordinate with future states
without explicitly representing them—we will call this form implicit anticipation),
it describes the kinds of systems we are mainly interested in: those able to realize
behavior mediated by explicitly formulated expectations. In order to produce ex-
plicit expectations, anticipatory systems need predictive mechanisms, which may
have different realizations, but nevertheless share the common feature of predicting
future states.

Thanks to their predictive mechanisms, anticipatory systems are able to anticipa-
tory behavior, which may be defined according to (Butz et al., 2003b, p. 3) as:

[...] a process or behavior that does not only depend on past and present but also on predic-
tions, expectations, or beliefs about the future.

It is this capability to formulate predictions and to use them for own purposes that
distinguishes an anticipatory system from a merely reactive one. For example, an-
ticipation plays a key role in goal-oriented and proactive behavior, since patterns
of actions can be selected depending on their expected outcomes and not (only) on
stimuli that are available here and now. While reactive systems can be function-
ally described with STIMULUS → ACTION (S-A) behavioral patterns, anticipatory
systems have instead (STIMULUS +) EXPECTATION → ACTION (E-A) behavioral
patterns, which is permitted by the explicit prediction of a stimulus or an action ef-
fect (STIMULUS → EXPECTATION (S-E), or STIMULUS, ACTION → EXPECTATION

(S-A-E)).
However, not all anticipatory behavior has the same functional structure or in-

volves the same mechanisms. Anticipation has multiple facets and functions, powers
and limitations. In the next subsections, we introduce a theoretical distinction among
prediction and anticipation. We discuss the most relevant aspects of predictive and
anticipatory capabilities and suggest taxonomies that help frame the analysis of ac-
tual system implementations and the design of novel anticipatory cognitive systems
that realize multiple aspects of the put forward taxonomy.
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2.2 Prediction vs. Anticipation

A clear distinction needs to be drawn between predictive systems—those that
merely learn to predict—and anticipatory systems. Essentially, it needs to be ac-
cepted that predicting is not the same as anticipating.

Prediction is a representation of a particular future event.
Anticipation is a future-oriented action, decision, or behavior based on a (im-

plicit or explicit) prediction.

Anticipation, that is the main focus of this book, is based on prediction and is es-
pecially important for cognitive systems since it is typically something the agent is
concerned with.

To assess the predictive and goal-directed behavior capabilities of adaptive, cog-
nitive learning systems, it is useful to contrast different types of predictions as well
as different types of anticipatory behavioral influences. Thus, we now first propose
a taxonomy for predictions and anticipations for the realization of goal-directed be-
havior.

2.2.1 Predictive Capabilities

Prediction has received a considerable deal of attention in several scientific disci-
plines. Examples are predictions of time series and genetic series, weather forecast,
filtering and estimation in controlling plants, etc. Consequently, several methodolo-
gies have been developed that are based on a number of different approaches, rang-
ing from (neuro-)biologically oriented to traditional engineering techniques. Some
examples are Kalman filters (Kalman, 1960), neural networks such as Jordan and
Rumelhart’s (1992) type RNN or the LSTM (Gers et al., 2003), neurofuzzy method-
ologies (Tsoukalas, 1998), anticipatory classifier systems (Butz et al., 2003c), or
Bayesian approaches (Wolpert and Flanagan, 2001).

While these are all predictive methods, the predictive mechanisms involved are
rather different from one another. We now first introduce a taxonomy of predictive
capabilities and then discuss a possible role of different sources of information for
generating predictions.

2.2.1.1 Taxonomy of Predictive Capabilities

Predictive capabilities can distinguish predictive (learning) systems and help to clar-
ify for which kind of prediction a cognitive system is most effective to generate and
learn. Some systems are, for example, very effective to learn artificial grammars
but may be very ineffective to work on visual flow predictions, etc. Thus, this tax-
onomy distinguishes different aspects of predictions. In later chapters, we then use
this taxonomy for analyzing the capabilities of different predictive and anticipatory
learning systems to actually generate specific types of predictions and anticipations.
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Representation As a first criterion we distinguish which types of predictions each
system is able to generate. First, it is necessary to distinguish between discrete and
continuous predictions. Some systems are pure symbolic systems that depend on
discrete, symbolic input. Others usually handle real-valued inputs or even combi-
nations of both. Moreover, some systems predict (potentially discounted) reinforce-
ment values while others predict (potentially pre-processed) sensory inputs. Besides
the predictive input and output processing capabilities, it is necessary to specify if
the predictive system can predict exact next input or if it has multiple levels of pre-
dictive abstractions available. Moreover, a distinction can be made between systems
that are able to selectively predict partial aspects of the successive inputs and sys-
tems that predict all successive inputs (and/or generate chains of predictions).

Quality of Predictions Besides the nature of the predictions available, it is nec-
essary to distinguish between different qualities of predictions. The most important
question in this respect is if the predictions are concrete predictions of one next state
or if they are able to code a number of potential predictions or a range of predic-
tions. Similarly, it is necessary to distinguish systems that are only able to produce
deterministic predictions with systems that can generate noisy predictions. In re-
lation to this, predictions may be endowed with a confidence measure. Finally, it
needs to be assessed if the system can learn a predictive model successfully given
a Markov decision process (MDP) or also a partially observable Markov decision
process (POMDP) problem. In the latter case, the system needs to learn internal
state representations in order to bridge ambiguous inputs.

Time-Scale of Prediction Prediction can be done at different time scales. Most
systems predict the immediate, next input property. However, there are others that
can predict long-term dependencies. For example, one can predict the immediate
(t + 1) and the long-term (t + n) effects of an action. This can be done in different
ways: for example, by explicitly learning to predict t + n, or by iterating several
t + 1 predictions. Again others are able to generate multiple predictions on various
levels of abstraction in space and time. For example, a hierarchical predictive system
may be able to predict immediate next sensory input on the lower level, but may
predict the abstract flow of the sensory input on a higher level (such as that the flying
ball will hit the approaching wall soon and will then bounce back with somewhat
reduced velocity).

Obviously, the temporal horizon of prediction influences its accuracy. There is a
trade-off between the time scale of prediction and its accuracy: the farther into the
future trying to predict, the less accurate (and more uncertain) the prediction will
normally be—as we know, for example, from weather forecasts. These limitations
make it even physically impossible to predict t + n with bounded accuracy if n is
too big. One example is sensory prediction. It is likely that, when I am walking, I
can predict the sensory effects of my next step –and there is evidence that such a
prediction is unconsciously generated and used for controlling action. It is however
very unlikely that I can predict the sensory effects that I will experience after one
hundred steps. Another example is state prediction. If I watch somebody walking, I
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can predict with some accuracy where he will be in a few seconds, but not in several
hours.

These limitations depend mainly on two facts. First of all, there are non-linear
dynamics that can change the result drastically (for example, nearly unpredictable
events such as the walking agent changing his mind). Even assuming that the dy-
namics do not change drastically, however, the computations are so complex and
have an inherently recursive character—so that chaotic behavior is destined to occur
eventually—leading any predictive mechanism to eventually produce highly error-
prone predictions.

Designing accurate algorithms is not the only way to solve the trade-off between
time scale of prediction and its accuracy, though. One alternative way is to generate
more coarse-grained predictions. For example, I can predict with great accuracy that
a walking man will be ‘near the park’, or ‘in the same city’ after one hundred steps.
While fine-grained predictions could be inaccurate, coarse-grained predictions can
still be very accurate. According to Tsoukalas (1998, p. 576): “Past and present
observations are crisp numbers while predictions are fuzzy numbers.” Consequently,
it has been argued (Pezzulo and Castelfranchi, 2007) that the intrinsic limitations of
predictive power could have lead to the development of coarse-grained, abstract
concepts.

Generalization Capabilities Yet another highly distinguishing criterion for pre-
dictive learners is the capability of generalizing their predictions to similar events,
sensory inputs, or other regular input properties. Hereby, similar situations may be
characterized by sensory inputs that have a certain amount of stimuli, or stimuli
properties, in common. For example, similar sequences may be generated by an
identical underlying grammar. Finally, it needs to be assessed if the systems are able
to identify abstract environmental properties beyond the generalization over simple
stimulus input.

Focusing Capabilities Besides the generalization capabilities with respect to sim-
ilar inputs, generalization capabilities or rather focusing capabilities are also highly
important for the generation of predictions. For example, it might be very easy to
predict certain parts of a visual scene (for example, constancy) but much more dif-
ficult to predict other parts in the scene (for example, a moving object or agent or
the somewhat random patterns of the leaves of a tree on a windy day). Thus, a pre-
dictive system should be able to ignore or generate noisy predictions for inputs that
are hard to predict whereas concrete near exact predictions for those parts that are
easily predictable. Systems can be evaluated on their capabilities of ignoring irrel-
evant or distracting inputs. Moreover, they can be evaluated if predictions can be
generated for parts of inputs only—either spatially or in a more object-related or
property-related fashion.

Context- and Action-Dependent Predictions Although it seems very important
for cognitive systems to handle:
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1. action information and
2. context information

in ways other than bottom-up, sensory information, only few current predictive
learners actually induce such distinctions. Thus, it needs to be assessed how systems
can handle action information and context information. Similarly, reward informa-
tion may be handled in different ways. Finally, it needs to be clarified how these
different types of information may be merged, if handled separately.

Internal State Predictions Besides the predictions of sensory or pre-processed
inputs, it might be highly advantageous to be able to predict own internal states.
More importantly, future behavior and future relevancies may give advantages when
evaluated for anticipatory behavior. Also, it might be advantageous to predict future
motivational and emotional states to be able to exploit opportunities and avoid up-
coming danger.

Prediction Related to One’s Own Actions or of Other Events It is also very
relevant to distinguish between predicting the consequences of one’s own actions,
and predicting other events that do not depend, or only partially depend, on our
actions. The former have the form: ACTION → EXPECTATION (A-E), while the
latter has the form: STIMULUS → EXPECTATION (S-E).

It is possible that both kinds of predictions are realized by a shared neural mech-
anism, such as an internal forward model, as proposed by Schubotz (2007). Never-
theless, they need to be distinguished, since the former describe regularities in the
effects of our actions while the latter describe more ‘objective’ regularities in the
environment.

This fact has relevant consequences in the process of development. Learning to
distinguish what depends on us, and what does not, or what are the limits of our
influence, is an important part of cognitive development and the formation of our
body scheme (Piaget, 1954; Meltzoff and Moore, 1997), as discussed above. If we
assume that we can experiment more readily with what depends on us, the effects
of our own actions could be learned first, while predictions of external phenomena
could depend on a self-other distinction that may come later in development.

2.2.1.2 Different Sources for Prediction

Predictions are typically based on prior knowledge, for example, on our past expe-
rience in similar situations or also information acquired by others. However, ‘the
past’ can be represented and processed in different ways. Thus, predictions often
depend on different sources of prior information and the exploitation of these to
learn suitable predictions effectively.

Statistical Regularities The most popular mechanisms for prediction are based
on statistical information that is accumulated. These mechanisms are then often
mimicked or bootstrapped with Bayesian prediction or soft computing algorithms,



2 The Anticipatory Approach: Definitions and Taxonomies 29

such as neural networks or fuzzy logic. Typically these methods require a lot of
information to be trained. Basically, all these mechanisms establish (implicitly or
explicitly) a similarity between a set of past experiences and a novel experience,
and use this similarity to generate predictions.

Analogy Another source for prediction is analogy, that is based on mapping of
knowledge into multiple distinct domains, which permits predictions in a given do-
main without being trained in it. Analogical reasoners usually assume that a map-
ping with another domain (in which there has been some training) can be found.
In this sense, the similarity is not established within events in a single domain, but
in distinct domains. Analogy then focuses on abstract commonalities between do-
mains, such as big dogs are dangerous, thus, also big tigers are dangerous or since I
usually find milk close to butter I also expect to find flour close to bread.

In a sense, any categorization is an analogy with a past situation; here we restrict
the term ‘analogy’ to inferences involving mapping between at least two distinct do-
mains and establishing ‘profound’ or ‘structural’ similarities and not simply surface
similarities.

Inference Predictions can be done on the basis of inference rules. For example,
our ‘ingenuous physics’ model can tell us that all objects fall due to gravity. We
can then predict that if we throw an object, it will fall, independently of the object
and independently of any observation. On the basis of categorical knowledge (for
example, ‘all fragile objects that fall down will break’), inferences such as modus
ponens can be done (for example, ‘my glass is falling down’ → ‘my glass will
break’) that depend on the structure and not the content of information. Of course,
in order to make such an inference it is required that information is first categorized
(for example, deciding that a glass is a fragile object).

Prediction Based on the Functional Stance Until now we have mainly provided
examples of prediction that are based on information at the level of physical proper-
ties of objects. There are however some parts of our environment that can be better
understood if we think in terms of their function, and not their physical realization.
For example, if we want to understand why birds fly, it is better to think of their
wings in terms of their function (as a product of evolution) and not in terms of tis-
sues and bones. In the same way, we can conceptualize artifacts such as cars and
computers, whose function depend on the fact that they were explicitly designed for
something.

Dennett (1987) introduces the term physical stance for models that are only con-
cerned with physical and chemical properties of objects and the term design stance
for models that are concerned with things like purpose, design, and function. When
we assume the design stance, we can form predictions that are much more difficult
on the basis of a purely physical stance: for example, we can predict that a car with-
out the engine will not move, while a car without a seat may still move. Of course,
the design stance only makes sense for some objects in our environment. It usu-



30 G. Pezzulo, M.V. Butz, and C. Castelfranchi

ally produces quite coarse-grained and abstract predictions, which, however, can be
often behaviorally much more useful than fine-grained physical predictions.

Prediction Based on the Intentional Stance: The Social Domain Other sources
for prediction exist in social behavior that permits the prediction of other’s behavior.
Using Dennett’s (1987) terminology, if we treat an agent as an intentional entity we
are assuming the intentional stance and we can ascribe to it beliefs, goals, desires,
preferences, etc. (regardless if the agent has these mental states or not). We can then
use a representation of the other’s mind for predicting its behavior: for example, if
we know that John likes music, we can predict that he will go to a live music show.
This source of prediction is typically not available for entities to which we can not
ascribe mental states.

In the social domain the capability to predict the other’s behavior on the basis
of the intentional stance is called mind reading. Two different accounts have been
suggested. According to the former, called ‘theory theory’, an agent can build up
a model of the minds of other agents, including their beliefs and goals, and use
it to predict their behavior. According to the latter, called ‘simulation theory’, the
agent represents other people’s mental states by adopting their perspective and by
using it’s own mind as a model. In the former case the intentional stance is explic-
itly requested for building a model of the agent’s mind, while in the latter case the
intentional stance is implicit, since the further assumption that the agent’s and the
other’s mind are similar is also required 1.

2.2.1.3 On the Complementarity of Different Forms of Prediction

These different forms of prediction are certainly not mutually exclusive. For ex-
ample, we can predict the trajectory of a ball both on the basis of the ‘ingenuous
physics’ model and on the basis of mechanisms such as internal forward models
that predict a series of sensory states. These mechanisms have complementary pow-
ers and limitations: the former can be used in absence of perceptual input but ar-
guably produces coarse-grained predictions (for example, the ball will fall quickly),
while the latter needs perceptual input and produces fine-grained predictions (for
example, the actual trajectory of the ball integrating forward predictions and sen-
sory feedback). One can also predict behavior of an agent by using two models, one
based on the physical stance and the other on the intentional stance. Of course, these
models will generate different kinds of predictions, which may be complementary
and may be integrated to an overall prediction as needed.

The modularity of the brain also suggests that predictive representations are de-
pendent on various sensory inputs and may be combined in various ways dependent
on their availability, current estimated reliability, current intentions, etc. (Maravita
et al., 2003; Schwartz et al., 2004). Thus, complementarity among different predic-

1 We do not discuss other possible approaches to simulation theory that are based on resonant states
and mirror neurons (Gallese and Goldman, 1998), which may also be interpreted as requiring an
intentional stance.
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tive mechanisms is very relevant in modular and hierarchical architectures, which
we discuss later on in further detail.

2.2.2 Anticipatory Capabilities

The predictive capabilities are mostly an important ingredient for successful antic-
ipatory processes, however, anticipatory mechanisms come also in very different
forms and can be useful in rather different circumstances. Thus, we now provide
a taxonomy of different anticipatory mechanisms. First, we introduce a distinction
between implicit and explicit forms of anticipation, and between on-line and off-line
uses of anticipation. Next, we discuss the kinds of anticipations related to a vari-
ety of an agent’s cognitive functions, offering a taxonomy of the involvement of
anticipations in different cognitive processes.

2.2.2.1 Implicit vs. Explicit Anticipation

A difference exists between mechanisms that realize anticipation with or without
explicit representations of future events. Anticipation can be realized procedurally,
without any need for formulating explicit expectations: we call this implicit antici-
pation. But it can also be mediated by explicit representations: we call this explicit
anticipation (cf. Butz et al., 2003b; Pezzulo, 2007).

Implicit Anticipation In nature there are several functions that require a reference
to the future, and not only to current states. Take as an example sensorimotor coor-
dination. What is required in a dynamic world is to coordinate with future events,
not current ones—otherwise no one would be able to catch a ball, or to track a flying
bird.

Although these functions include in principle an anticipatory aspect, they do not
require necessarily an explicit anticipatory representation (although the anticipatory
representation may facilitate or even enable some of these tasks). It is an empirical
issue whether or not anticipatory behavior in nature is realized by means of repre-
sentations, or not. One organism can simply learn to coordinate just in time with a
dynamic event of the environment, say following a flying bird with its eyes, without
predicting its movements. Gibson (1966) has provided excellent examples of sen-
sorimotor coordination in perception that is not mediated by representations, and
recently O’Regan and Noë (2001) have put forward this approach by arguing that
sensing consists in the skilled exploitation of structure of sensorimotor contingen-
cies by means of the perceptual apparatus. Similarly, evolution may have evolved
reactive but implicitly anticipatory structures, such as the efficient behavior of bac-
teria following some gradients to better food sources or also the morphological in-
telligence embedded in animal bodies (Pfeifer and Gomez, 2004).

We then define implicit anticipation as a functional structure that is functionally
anticipatory but realized by a reactive mechanism. Implicitly anticipatory structures
can be described as: STIMULUS AT TIME T → ACTION THAT IS LEARNED/EVOLVED

FOR TIME T+1. Almost all successful actions, also of the stimulus-response kind,
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require that the action is adapt to respond to the world as it is after the stimulus,
otherwise it will often be too late. That is, it is in the nature of living organism’s
learning systems to be responsive to signs of the future (for example, a shadow or
a noise as a sign of danger) that are perceived now, even without forming explicit
representations of the future.

Explicit Anticipation However, it is not the case that all behavior in natural cog-
nition systems work this way. Accumulating evidence, which we review in the next
section, indicates the presence of anticipatory mechanisms that permit the genera-
tion of explicit expectations, and to use them for initiating, regulating, controlling,
and selecting action. This view is also popular in AI and cybernetics. For example,
according to Craik (1943, pg. 61), anticipation can generate imaginary experiences,
that is, mental simulations of external realities:

If the organism carries a small-scale model of external reality and of its own possible actions
within its head, it is able to try out various alternatives, conclude which is the best of them,
react to future situations before they arise, utilize the knowledge of past events in dealing
with the present and future, and in every way to react in a much fuller, safer, and more
competent manner to the emergencies which face it.

Anticipatory mechanisms, however, can be diverse. They can have different realiza-
tions and permit the anticipation of different things. Not all explicit representations
of future states are of the same kind: accordingly, Butz et al. (2003b) introduced a
taxonomy that distinguishes among implicit, payoff, sensorial, and state anticipatory
mechanisms:

• Payoff anticipatory mechanisms predict the payoffs of an action and base action
selection on the payoff predictions.

• Sensorial anticipatory mechanisms produce sensory expectations and support
perceptual processing.

• State anticipatory mechanisms produce more complex forms of expectations,
such as event anticipations, that support decision making and execution.

2.2.2.2 On-Line and Off-Line Uses of Anticipation

An important distinction is among on-line and off-line uses of predictive mecha-
nisms for the sake of enabling anticipatory behavior. Several cognitive functions,
such as action control, require predictive mechanisms that are used on-line for gen-
erating predictions (for example, of the sensory consequences of an action’s effects)
that serve for regulating behavior. In this case, we refer to on-line mechanisms since
the predictions are coupled to the current sensorimotor cycle: this guarantees that a
prediction can be matched against a sensory input.

However, predictive mechanisms can also be used differently, for example, for
the sake of generating long term predictions. We call this use, that is unrelated to
the current sensorimotor cycle, an off-line use.
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On-Line Uses of Anticipation Anticipation can be used on-line. For example,
the prediction of the next sensory input can be used for the sake of action control
and monitoring. Figure 2.1 provides an illustration of an agent that simply interacts
with its environment (left), and an agent that produces expectations and runs an
‘inner sensorimotor loop’ that parallels actual interaction (right) (see also Grush,
2004). The agent on the right has an anticipatory mechanism, called forward model
(see Chapter 1), that permits the prediction of next sensory input. This predictions
can be used in several ways. For example, the agent can compare the predicted and
sensed action effects for the sake of monitoring and adjusting its execution.

Fig. 2.1 Left: an agent engaged in sensorimotor interaction with its environment. Right: an agent
running an ‘inner sensorimotor loop’ which parallels actual interaction.

Off-Line Uses of Anticipation Anticipation can be used off-line, as well. For ex-
ample, the simulation of the long term effects of one’s own behavior produces rep-
resentations of a (possible) future that can be stored and/or internally manipulated.
Processing information about the future produces striking adaptive advantages and
opens the possibility to develop so-called high-level cognitive capabilities. Exam-
ples of specific advantages of conceiving the future now, such as comparing opportu-
nities and possible action outcomes, simulative planning (Hesslow, 2002), forecast
and avoid possible dangers (Damasio, 1994), are illustrated in detail in Chapter 3.
As an example, Figure 2.2 illustrates a case of simulative planning in which possi-
ble trajectories are generated, evaluated (with respect to the compliance with current
goals) and then selected.

Recently several artificial systems have been proposed van Dartel (2005); Hoff-
mann (2007); Pezzulo (2008b); Tani (1996); Vaughan and Zuluaga (2006); Ziemke
et al. (2005) that generate long-term predictions by chaining short-term predictions,
and use this capability for simulative planning (a virtual exploration of multiple pos-
sible plans before—or instead of—attempting them in practice) or for evaluating the
outcome of their actions in advance.

A possible neural substrate for this mechanism is indicated by Middleton and
Strick (2000): a ‘loop’ between the cerebellum, that produces sensory predictions
(Blakemore et al., 2001), and the basal ganglia, that selects the action to perform
and initiates movement (Redgrave et al., 1999).
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Fig. 2.2 Simulative Planning. Before deciding where to go, a driver anticipates the effects of his
two choices by simulating driving in the two directions. He then selects the best option.

2.3 Anticipation and Goal-Oriented Behavior

Several theoretical frameworks in the philosophical, biological, and psychological
literature are based on the idea that living organisms act purposively, and it is impos-
sible to understand behavior without referring to its teleological structure (Rosen-
blueth et al., 1943). For example, the fact that an action can be defined only on the
basis of its goal is a central tenet of the ideomotor principle (Herbart, 1825; James,
1890); similarly, Arbib and Rizzolatti (1997) argue that ACTION = MOVEMENT

+ GOAL. However, when one comes to the specification of what are the goals of
a living system, and what is the functional structure of goal-oriented behavior, she
faces a variety of different possibilities.

Clearly, living organisms of different complexities can have different teleological
structures. Goals can be either explicitly represented and pursued, or embedded in
the organism’s design, which is shaped by evolution. This also means that in some
cases ‘purposively’ has to be intended in the stronger sense (that is, a mechanism
exists that includes an explicit goal, which triggers action), while in other cases it has
to be intended in a purely functional way (that is, the organism is designed/evolved
for realizing a goal that is not represented, such as ‘surviving’).

Castelfranchi (1998) introduces a distinction between strong and weak forms of
goal orientedness, that are called goal-oriented and goal-directed respectively:

In other terms, the agent’s behavior is aimed at producing some result: thus we are talking
of a goal-oriented action and of a goal-oriented agent. Among goal-oriented systems I will
consider in particular goal-directed systems. In these systems not only action is based on
perception, but the latter is also the perception of the action’s effects and results, and the
agent regulates and controls its actions on such a basis. The agent is endowed with goals,
that is, internal anticipatory and regulatory representations of action results.

Here we are mainly interested in goal-oriented behavior in the strong sense (that is,
goal directedness), and we claim that anticipation is required for acting truly purpo-
sively in that sense. One could say that implicit forms of anticipation are sufficient
for acting purposively in the weak sense, while explicit forms of anticipation are
needed for acting purposively in the strong sense.
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In order to be goal-oriented in the strong sense, it is not sufficient that the be-
havior of an organism is implicitly oriented toward a (non represented) goal that is
selected by evolution. On the contrary, the organism’s actions are selected, executed,
and monitored thanks to an explicit, anticipatory goal representation (and not simply
with a functional equivalent that is selected by evolution). The fact that actions have
such a teleonomic structure has recently been acknowledged in several psychologi-
cal and neurobiological studies. For example, Jacob and Jeannerod (2005) argue that
“An action is a goal-directed sequence of bodily movements initiated and monitored
by what we shall call a motor intention”, and Gallese and Metzinger (2003) high-
light that, “In the monkey brain microcosm so far explored, the goal of grasping
an object is still almost completely overlapping with the action-control strategies.
Action control actually equates to the definition of the action goal: the goal is repre-
sented as a goal-state, namely, as a successfully terminated action pattern”, see also
Hommel et al. (2001) for a theory of action representation based on anticipatory and
ideomotor codes.

Overall, truly goal-oriented behavior in living organisms is realized by func-
tional structures that include anticipatory mechanisms and representations. In fact,
enabling goal-oriented behavior may be one of the most important functions of an-
ticipations in cognitive systems.

2.3.1 The Anticipatory Structure of Goal-Oriented Behavior

A comprehensive theoretical framework for understanding the relations between
anticipation and goal-oriented behavior is that of anticipatory behavioral control
(Hoffmann, 2003; Hoffmann et al., 2007), which has its roots in the ideomotor prin-
ciple:

Departing from the premise that almost all behavior of humans and higher animals is goal-
oriented, the framework proposes that (1) a voluntary action is preceded by a representation
of the to-be-attained effect(s), (2) learning of such effect representations is triggered by the
comparison of predicted and actual effects resulting in the primary learning of action-effect
relations, (3) situational context is integrated secondarily, (4) action-effect representations
are activated by the need or desire of an effect-related goal, and (5) conditioned action-effect
relations can also be activated by contingent stimuli.

Three points are worth noting. The first is that in this theoretical framework any
behavioral structure is essentially goal-oriented and not simply stimulus-response.
Action is purposive and not reactive. The second is that anticipation is required in all
the phases: learning actions (their effects and how to execute them), deciding which
motor action to execute, controlling and monitoring actual execution. The third is
that, since the ideomotor principle indicates that goal-oriented behavior depends
essentially on anticipation of the action’s effects, it suggests an ‘inversion’ of the
direction of causality: goal-oriented behavior proceeds from effects to causes, from
the future to the past, and not vice versa.
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2.3.2 Not All Anticipatory Behavior Is Goal-Oriented

We have argued that goal-oriented action is anticipatory in nature. However, the
converse is not always true: predictions and anticipations can have several roles,
that we will review and illustrate in Chapter 3. For example, a system that is able
to anticipate the effects of its own actions in the future could use anticipation (only)
for learning and not for activating and controlling its current actions. According to
Millikan (2004, p. 191):

In the case of an animal that predicts and represents the results of its own purposive action,
it is easy to slip into thinking that in representing the future it is guided, no just by the future
it represents, but toward the future it represents. That is, it is easy to confuse anticipating
future events for which it itself is purposively responsible with using representations of
those future events as guiding goals.

2.3.3 Which Anticipations Permit Goal-Oriented Action?

According to Hoffmann (2003), two main kinds of anticipations are required in a
goal-oriented behavioral structure (see Figure 2.3).

1. The first anticipation type is effect anticipation. It relates to the goal: the intended
effect of the action. In order to specify a goal-oriented trajectory, a representation
of the intended effect has to precede action. For example, the representation of the
hand in contact with a pencil (including proprioceptive and exteroceptive input)
should precede the initiation and selection of the actual grasping movement.

2. The second anticipation type is start anticipation (or trigger anticipation). It re-
lates to the environmental, contingent conditions that signal a good opportunity
to successfully produce the desired effect. For example, the action to grasp a
pencil can only be started when a pencil is there. These opportunities have to be
picked in time in order to successfully produce the goal-oriented action, other-
wise there is the risk of being unable to do it any more. However, this does not
mean that an opportunity triggers directly an action, unless it satisfies an agent’s
goal –this is one difference between goal-oriented and merely reactive agents.

The first anticipation type ensures that the action can be purposively selected and
its effects controlled. The second anticipation type, in a sense, reverts the stimulus-
response paradigm: it is not a stimulus that triggers an action, but the presence of
an opportunity that is anticipated. In this way, the opportune context for an action is
not passively experienced, but actively searched for and anticipated—for this reason,
this kind of anticipation can also be seen as a form of context dependency.

However, anticipations can be of different kinds and can involve different repre-
sentation formats: this depends on the fact that anticipatory goal-oriented action is

Fig. 2.3 Two kinds of anticipation
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organized hierarchically, and each level of the hierarchy requires different kinds of
anticipation. We henceforth investigate the issue of hierarchical goal-oriented action
and its anticipatory components.

2.3.4 The Hierarchical Organization of Anticipatory
Goal-Oriented Action

There is large consensus nowadays that in cognitive agents the control of action
is multilevel and that the brain includes hierarchies of increasingly complex motor
representations, that operate at different levels of representational abstraction and
time granularity (Hamilton and Grafton, 2007; Fries et al., 2007; Wolpert et al.,
1998, 2003). Different taxonomies have been proposed and we distinguish four lev-
els: intention, goal, action, and movement. One can intend to fulfill an action, say
eating something, even without specifying the means to do it. This is possibly the
highest level, that we might call intention. The action can be therefore situated and
anchored to the present situation, for example eating this ice cream right now: this is
a goal. In order to execute the action to eat the ice cream, a further specification and
instantiation is needed in terms of the appropriate sensorimotor representations that
can realize the goal. Lastly, the appropriate motor programs and movements have to
be actuated (and different patterns of actions can realize the overall action)2.

An important related aspect is the realization of serial behavior, such as a se-
quence of actions appropriate for realizing a distal goal. Lashley (1951) firstly no-
ticed motor plans do not consist of simple chains of stereotyped behaviors triggered
by feedback. On the contrary, whole sequences or plans are established in advance as
high-level motor plans that unfold into lower-level actions and movements—again,
a hierarchical structure (MacKay, 1987). Evidence comes from numerous sources.
For example, patterns of errors in motor behavior reveal knowledge of successive
actions (for example, slips of tongue) (Lashley, 1951). Moreover, the time to initi-
ate a series of movements increases with the number of movements to be produced
(Sternberg et al., 1978).

Figure 2.4 provides an example of hierarchies of action organization in which
action plans (for achieving an intention, goal and action respectively) are specified
at an increasingly detailed level from high to low; see also (Pacherie, 2007; Wolpert
and Flanagan, 2003). Hommel (2003) provides a comprehensive review of how
planning is organized hierarchically, too, and how this provides several advantages,
such as to prepare plans at a rather abstract level while letting details be filled in from
lower level control components, effectively delegating actual control to already es-
tablished sensorimotor loops. Hierarchical models of action control and recognition
were extensively studied from a computational perspective, too (e.g., Bakker and
Schmidhuber, 2004; Dehaene and Changeux, 1997; Paine and Tani, 2005; Schmid-
huber, 1991b; Stringer and Rolls, 2007; Wiering and Schmidhuber, 1997).

2 A different terminology is introduced in Bratman (1987) and also Pacherie (2000): future directed
intention, present directed intention, motor intention, movement. Hamilton and Grafton (2007)
suggest yet another action specification hierarchy: the intention level (the long-term goal of an
action); the goal level (the short term goals for achieving the intention); the kinematic level (the
body posture and movements in space and time); the muscle level (the pattern of muscle activity).



38 G. Pezzulo, M.V. Butz, and C. Castelfranchi

2.3.4.1 The Role of Expectations at the Different Levels

Expectations, arguably of different kinds, can have roles in action selection and
monitoring that depend on the level they belong to.

Fig. 2.4 Hierarchical organization of action.

At the higher level, expectations can be used for selecting the intention (among all
the possible agent’s goals) and for monitoring its achievement. At the level of goals,
expectations can be used for selecting the action to execute and to monitor it. At the
level of actions, expectations can be used for selecting the appropriate movements
to actuate and to monitor their performance. However, the three kinds of expecta-
tions differ with respect to their contents, representational formats, and degrees of
accessibility, and are generated by different mechanisms. Expectations formulated
at the intentional and goal levels have declarative content that can be used, for ex-
ample, for practical reasoning and deliberation (Bratman, 1987). Expectations at the
action level have instead a sensorimotor format that can be directly matched with
sensory and proprioceptive information (cf. Frith et al., 2000; Pacherie, 2007 for a
discussion of consciousness access to these expectations).

2.3.5 Additional Elements of True Goal-Oriented Behavior

Are the anticipations of one’s own effects, and the selection of an action based on
these effects, the only ingredients of goal-oriented behavior? Traditional models
of goal orientedness in cybernetics and AI such as the TOTE (test, operate, text,
exit) model (Miller et al., 1960) indicate additional functions based on anticipation,
which complement the ideomotor approach.

We have already seen that an important distinction is among goals that are or
are not explicitly represented. Another important distinction is the degree of aware-
ness and accessibility of the goal for internal manipulations. Differently from the
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ideomotor principle, TOTE is based on an explicit goal representation that is also
available outside the action itself. Such a goal representation permits the perfor-
mance of a number of on-line and off-line operations. One of them consists of eval-
uating the world and in particular matching the desired with the current state; in
this respect, the test sub-process has the function of both the action trigger and the
stopping condition. More precisely, the mismatch serves to select and trigger the
rule whose expectation minimizes the discrepancy. Another effect of the explicit
and available goal representation is that, as opposed to the ideomotor principle, the
TOTE “knows” if and when a goal is achieved. Lastly, an explicit goal representa-
tion detached from actions can serve to deliberate and to compare goals for their
selection on the basis of reasons and beliefs. Another distinction among mecha-
nisms of goal orientedness is that while in the ideomotor principle desired results
(motivating the action) are not distinguished from expected results of actions, the
latter including the former, in the TOTE they are distinguished. We refer to Pezzulo
et al. (2007) for a comparison of the TOTE model with the ideomotor principle,
in which we conclude that they are highly complementary despite contrary views.
They merely focus on different aspects of goal orientedness, which can be success-
fully integrated. Chapter 5 describes concrete artificial learning architectures that
are capable of efficient anticipatory goal-directed learning and behavior.

2.4 Anticipation and Learning

L’intelligence organise le monde en s’organisant elle-même Jean Piaget

Anticipation does not only shape behavior at the time scale of action execution,
but also at the time scale of evolution and learning. In order to satisfy its goals, a
goal-oriented system needs to develop a behavior repertoire that reliably reproduces
desired expected outcomes. For doing so, it needs two capabilities: (1) to learn to
predict the effects of its own actions, and (2) to develop autonomously a behavior
repertoire that is adapt to satisfy its goals. Both are enabled by predictive mecha-
nisms.

2.4.1 Learning to Predict

All adaptive organisms direct their behavior toward effects that are rewarding, and
at the same time they avoid (possibly) dangerous or punishing states. For doing so,
learning to predict future events and future outcomes of their own actions on the
basis of experience is a presupposition of any learning system.

Several learning algorithms permit the implicit learning of anticipations of re-
wards and sensory states. However, here we are mainly interested in learning ex-
plicit anticipatory models of the environment. We have in fact argued that in order
to act really purposively, an agent has to develop anticipatory codes for predicting its
environment, and in particular the effects of its actions. Explicit anticipatory mech-
anisms are then needed for flexible goal-oriented behavior. As we have reviewed,
anticipatory codes in a living organism’s brains can have multiple realizations, but
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for the sake of simplicity we indicate them as STIMULUS → EXPECTATION (S-E)
or ACTION → EXPECTATION (A-E).

Different anticipatory mechanisms could require different learning mechanisms,
possibly implemented in different brain areas (see, for example, Doya, 1999). How-
ever, expectations about future salient events, such as rewards and punishments,
have a major role in learning, and the relevance of prediction in many if not all forms
of learning is widely acknowledged. For example, one central tenet of theories of
classical conditioning (Rescorla and Wagner, 1972) is that organisms only learn
when events violate their expectations. The neural correlates of this phenomenon
are starting to be understood. Neurobiological studies (Schultz et al., 1997; Schultz,
1998) illustrate that prediction of reward and selection of rewarding actions in pri-
mates could be mediated by error signals carried by dopaminergic neurons, and
Doya (2002) describes meta-learning strategies based on these neuromodulatory
mechanisms. These neural mechanisms that signal error in (reward) prediction and
surprise can be used for learning the value, positive or negative, of an agent’s ac-
tions. Other examples of learning mechanism that depend on predictions are dis-
cussed elsewhere (Doya, 1999; Kawato, 1999; Wolpert et al., 1995), in which in-
ternal models of the environment, including sensory and state predictions, can be
learned by minimizing the sensory/state prediction error. Another example comes
from the psychological domain: it has been suggested (Hommel et al., 2001; Kunde
et al., 2004, 2007; Prinz, 2005) that the behavior repertoire of an anticipatory agent
includes ACTION → EFFECT pairs that are developed by means of associative mech-
anisms.

2.4.2 Bootstrapping Autonomous Cognitive Development:
Surprise and Curiosity

Another crucial problem for a goal-oriented system is to autonomously develop a
repertoire of actions that can appropriately satisfy its goals, or which actions are
worth learning. As recently acknowledged in neuroscience and in reinforcement
learning research (Dayan, 2002; Schultz et al., 1997; Singh et al., 2005), two mech-
anisms depending on anticipation, surprise, and curiosity, are deeply involved in the
autonomous cognitive development of actions.

Basically, surprise is a measurement of mismatch between prediction and actual
sensation. In order to be useful for a learning system, it has to signal novelty and
relevance at the same time. Novelty can be assimilated to unpredictable, at least in
the sense that the learning system has not (yet) developed a repertoire of actions
to reliably produce the intended effects, or an internal model that correctly predicts
the event. However, not all unpredicted events are relevant for a learning system,
since some of them are not salient to learn, or cannot be learned at all. In this sense,
habituation mechanisms are needed to balance surprise and to cancel stimuli that
are not useful for learning. Moreover, mechanisms for deciding which parts of the
environment can be learned are needed as well since the system can otherwise get
stuck in hopeless attempts.
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If an agent has these mechanisms, it can autonomously direct its attention and
decide which parts of its environment to explore and learn—which is referred to as
“curiosity”. The idea is that internal forms of reward could signal which actions are
‘intrinsically interesting’ to learn and that an agent can be ‘curios’ about parts of the
environment that are surprising (signaling that they are novel) and predictable (sig-
naling that they can be learned, that is, are believed not to be simply random) (Singh
et al., 2005; Schmidhuber, 1991a, 2002). Surprise and curiosity lead to the explo-
ration of novel and predictable parts of the environment and may thus bootstrap
cognitive development. They may be considered a sources of ‘internal motivation’
to explore the environment and consequently expand one’s own knowledge and re-
lated action repertoire. One hypothesis on the neural correlates of these mechanisms
is put forward by Redgrave and Gurney (2006), who indicate that dopamine could
signal the unpredictability of actions and may be required to learn novel actions.

2.4.3 From Willed to Automatic Control of Action and Vice
Versa on the Basis of Surprise

There is another form of learning, often referred to as skill learning (Fitts and Pos-
ner, 1967), that consists in ‘automatization’, ‘routinization’, or ‘chunking’: con-
structing a compact representation of action sequences that can then be triggered and
executed automatically, without willed effort. We refer to Luria (1966) and Norman
and Shallice (1986) for a distinction between willed and automatic control of ac-
tion. Basically, the difference is that while in the former case attentional/conscious
resources are spent for triggering and monitoring the action execution, in the latter
case they are not required. Typically, willed actions are considered to be the result
of a deliberation, or related to a process of reasoning, while automatic ones are not.

If we assume that goal-oriented actions, to be executed in a willed or automatic
way, could have the form ‘action-effect’, routinization could consist in the formation
of ACTION → EFFECT, ACTION → EFFECT, ACTION → EFFECT sequences with two
main peculiarities: (1) while the whole ‘routine’ can be executed with willed effort,
the intermediate action-effect pairs are triggered automatically (each action-effect
pair is triggered automatically if it belongs to a sequence and the previous element
in the sequence is active); (2) while in the willed modality all the effects of actions
are explicitly under attention, tested and monitored during performance, in the case
of routines some of them are skipped.

What is the meaning of skipping a test? There are at least two possibilities

• tests can be performed automatically but without attention and conscious access.
In this case the sequence retains the structure ACTION → EFFECT, ACTION →
EFFECT, ACTION → EFFECT, but the tests on effects are performed at the auto-
matic level and are not accessible.

• some tests are really skipped. In this case the sequence functionally changes and
becomes ACTION → ACTION → ACTION → EFFECT. Although the effects can be
checked only at the end of the whole sequence, there are other ways to assess the
success of an action. Typically each action creates the appropriate preconditions
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for the next one to be executed. If one action can not be executed, this means that
the previous action has not created the appropriate preconditions.

Evidence for the first form of ‘test skipping’ comes from studies of the difference
between novices and expert performing actions (cf., for example, Chi et al., 1981),
which indicates that there are several differences in the error rates as well as in the
degree of conscious effort needed. In our perspective, during learning (for example,
to drive a car) internal models are usually unreliable and the error prediction signal
is needed for training them (for example, press the brake pedal, expect that the car
will slowly decelerate). This means that several tests are performed to assess if the
predictions are correct, and some of these tests have to be executed under attentive
control. After learning, internal models are so reliable that complex sequences of ac-
tions can be safely run automatically, without conscious effort, which might explain
the fact that monitoring is no more under attentive control.

Evidence for the second form of ‘test skipping’ comes from errors in routine ac-
tion performance, for example, when the agent fails to follow a ‘script’ (Schank and
Abelson, 1977) because one of its actions has been performed but has not produced
the appropriate preconditions for the next one. For example, one can unlock a door
with a key, and then try to open the door, without acknowledging/testing that the
door is still locked (because there are two locks, while usually there is only one).
In this case, the action to unlock has been successfully executed but it has not pro-
duced the appropriate preconditions for the next action, that is opening the door, to
be executed.

Overall, we might say that routinization can be safely performed when a certain
pattern of actions is reliable enough, and the amount to prediction error in the in-
dividual actions as well as in the chaining of actions is minimized. But, if during
action execution something goes wrong –a surprising event occurs, such as the car
failing to stop when the brake pedal is pressed, or the door failing to open– the con-
trol of action can become again willed, since attention is needed to understand what
goes wrong. This means that surprise has a crucial role in the passage between the
two levels of action control, willed and automatic, in the two senses: from willed
to automatic via routinization, and from automatic to willed when surprising events
arise3.

One related view on action routinization is put forward by Hommel (2003,
abstract). According to his view, routinization can be done on-line when a plan
is formed: “planning an action turns the cognitive system into a kind of reflex-
machinery, which facilitates the proper execution of the plan under appropriate cir-
cumstances”. The facilitation consists essentially in the context-sensitivity of senso-
rimotor structure that subserve motor action also without attentive and willed con-
trol. Although the structure of actual action execution can be described as reflex-like,
the action is still planned in terms of anticipated goal states or events, and is trig-
gered by appropriate (and anticipated) contextual conditions. This kind of action and

3 This passage has implications for the availability of information to attention and consciousness,
too, since different kinds of information could be under attention control during willed and auto-
matic control of action. We do not discuss this issue in further detail here.
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action plan thus retains the two basic requisite of goal-oriented action introduced in
sec. 2.3.3, effect anticipation and start anticipation (see also Hoffmann, 2003).

2.5 Conclusions

In this chapter we have provided definitions for anticipation and anticipatory be-
havior, we have discussed different types and aspects of predictive and anticipatory
mechanisms, we have classified anticipatory mechanisms in goal-oriented behavior,
and finally we have distinguished anticipatory mechanisms in learning structures.

Overall, we have illustrated a comprehensive conceptual framework of predic-
tion, anticipation, and anticipatory behavioral components. In the successive chap-
ters, we provide several examples of artificial learning systems and analyze them by
means of this framework. Before doing so, however, we discuss specific potential
benefits of anticipations in artificial systems, providing several examples of differ-
ent cognitive capabilities, individual and social, such as motor control, attention,
decision making, and social cooperation.



Chapter 3
Benefits of Anticipations in Cognitive Agents

Martin V. Butz and Giovanni Pezzulo

Man shoots an arrow into the future with a chord attached. The arrow fixes itself in an
image, and he hauls himself toward it. Paul Valery

This book proposes the anticipatory approach for the design of cognitive agents.
That is, we propose to implement anticipatory mechanisms in artificial cognitive
systems to generate highly flexible and adaptive systems that can efficiently cope
with dynamic environments. While the first two chapters identified several different
facets of anticipatory mechanisms, this chapter focuses on the benefits and potential
drawbacks of using these types of anticipatory mechanisms in cognitive systems. We
focus hereby on the explicit forms of anticipation defined in the previous chapter.
Thus, this chapter intends to answer questions such as: “What are the specific ad-
vantages of anticipatory mechanisms and capabilities?”, or “Why should we endow
artificial cognitive agents with anticipation?”, as well as, “Are there any disadvan-
tages in doing so?”

This chapter first identifies three general potential beneficial aspects of anticipa-
tions and then provides concrete examples of the impact of anticipation in several
cognitive functions such as motor control, learning, attention, and social interaction.
Section 3.3 points out that anticipations might not always be advantageous and may
sometimes interfere with effective behavioral execution—especially when the in-
volved predictions are inaccurate or not synchronized well. Finally, we summarize
and draw conclusions.

3.1 Potentials for Anticipatory Systems

The previous chapters have pointed out that anticipation is a fundamental aspect of
cognitive agents. Anticipations distinguish cognitive agents from adapted reactive
systems, which do not form explicit predictions, for example, of their environment,
of the effects of their actions, or of the behavior of others. Before describing the ad-
vantages of anticipation in single cognitive functions, here we provide an overview,
distinguishing between three kinds of advantages:

G. Pezzulo et al. (Eds.): The Challenge of Anticipation, LNAI 5225, pp. 45–62, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



46 M.V. Butz and G. Pezzulo

• Multiple representations
• Future-oriented capabilities
• Bootstrapping complex cognitive capabilities

3.1.0.1 Multiple, Detached Representations

Anticipation enhances adaptivity of living organisms and artificial systems. While
reactive agents are certainly able to adapt to some environments, there are limi-
tations in the complexity of the behavior they can develop. In this chapter and
throughout the book we provide several examples of behavioral capabilities that
are enhanced thanks to anticipatory mechanisms in the fields of action selection,
control, input selection, reflection, reasoning, and others. It is shown that based on
the representation of future expectations, anticipatory cognitive systems are able to
control themselves more effectively by means of predictive control principles ( cf.
Schlesinger and Barto, 1999; Camacho and Bordons, 1999). Moreover, they are able
to distinguish changes caused by themselves from changes caused by others, and use
that knowledge to adapt their representations, predictions, and behavior accordingly.
These capabilities and others will be discussed in more detail below.

Another important feature of anticipatory systems that enables several cognitive
functions is the necessary capability to represent multiple states in parallel. Sys-
tems that have implicit forms of anticipation can certainly coordinate with their
environment, but it is unnecessary to represent more than one (the current) state.
Anticipatory systems, by definition, need to represent the present state and at least
one potential future state. The consequent capability to represent (and act on) mul-
tiple representations and to engage in mental simulation of alternative perspectives
is required for several cognitive tasks. One tenet of purposive action is that a rep-
resentation of at least two states, the present and the desired one, is necessary for
goal-oriented behavior. It is also important that these states share the same repre-
sentational format, since they need to be compared to be able to decide if the goal
is already achieved or, at least, if progress is being made. Representing future al-
ternatives explicitly (such as an upcoming event, the existence of an object, etc.)
opens up the possibility to perform complex mental operations: for example, it al-
lows the comparison of multiple options for action decision making, the comparison
of available affordances in the present and in the future, the reasoning about the state
of mind of other agents (theory of mind, Buckner and Carroll, 2007). All these capa-
bilities share the prerequisite of imagining or simulating what is not here-and-now,
that is, being able to detach potential future states from the current state as well as
to detach other agents’ states of mind from the current own state of mind.

3.1.0.2 Future-Oriented Capabilities

Some capabilities are eminently future-oriented, since they are carried out for the
sake of future and not present needs. Specific mechanisms for predicting and rep-
resenting the future can facilitate them. In general, the capability to conceive the
future enables the selection of actions to establish future and not (only) present im-
mediate outcomes, selecting among multiple candidate futures, coordinating one’s



3 Benefits of Anticipations in Cognitive Agents 47

own actions in the present and the future in order to realize intentions and goals
that go beyond satisfaction of immediate needs, or producing and selecting future
affordances instead of simply exploiting present ones.

Taken together, these capabilities lead to the possibility to coordinate with the
future and not only the present—which is fundamentally different from the capa-
bility to efficiently coordinate behavior dependent on the present. This fact is of
paramount importance for explaining goal-oriented behavior. By explicitly repre-
senting a goal state, an agent can coordinate behavior based on that representation,
which is the idea put forward in control theory by Adams (1971), who argues that
goals serve as reference signals from the future (in Chapter 2 we also discussed the
fact that goal-oriented behavior needs to realize an ‘inversion’ of the direction of
causality, that is, from the future to the past). A teleonomic structure based on an
explicit representation of the future goal state can explain how an anticipatory agent
coordinates its actions in the present. It may also serve to study how the agent rep-
resents time and how the inversion from goals to means may be realized. Moreover,
it may be suitable to study how goals that can only be accomplished in the more
distant future may influence current behavior (which seems especially relevant to
explain intricate human behavior).

It should be noted that several researchers, nonetheless, argue that teleonomic
systems can also be accomplished by intelligently evolved behavioral patterns. For
example, on the basis of a parallel between self-organizing systems and morpho-
genesis, Keijzer (2001) sketches out an explanation of goal-oriented behavior that
avoids explicit representations of the future. He essentially suggests that an evolved
behavioral structure may implicitly encode teleonomy (an implicitly anticipatory
system, as defined in Chapter 2). However, the listed benefits below should point
out that although implicit anticipatory mechanisms may accomplish some of them,
the adaptivity and flexibility of the potential benefits can only apply if the future
is represented explicitly. That is, only actual representations of the future allow the
flexible adaptation of behavior based on both the generated representations of the
future and the encountered inaccuracies of the generated representations.

3.1.0.3 Bootstrapping Increasingly Complex Cognitive Capabilities

Anticipatory capabilities may not only be useful by themselves, but they may also
serve as the neural basis for the formation of increasingly complex cognitive capa-
bilities and abstract representations. Based on simple sensorimotor representations,
hierarchical, abstract representations may emerge that could be highly useful for
the development of grounded, symbolic representations of the environment, such
as object representations or event representations (such as touching an object). Re-
cent machine learning literature indicates that anticipation-based mechanisms that
depend on estimations of current prediction error, such as curiosity and surprise
mechanisms, can play an important role in the autonomous development of a reper-
toire of increasingly sophisticated, hierarchical representations and behaviors (Butz
et al., 2004b; Oudeyer et al., 2007; Schmidhuber, 2002, 1991b; Singh et al., 2005).
Overall, anticipation might play a role not only in enhancing individual cognitive
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functions, but also in extending a cognitive agent’s capabilities to learn more com-
plex, abstract, and symbolic concepts.

The more abstract cognitive capabilities face an important detachment problem.
In Chapter 1, we have proposed that simulative theories of cognition offer a bridge
between present- and future-oriented capabilities. The key mechanism is the possi-
bility to produce expectations by endogenously reenacting the sensorimotor struc-
tures that are used for the control of action, decoupling these expectations from the
online action. In this way, representations can be generated that are grounded (since
they originate from online control and monitoring of action) but that are detached
from their original online use. To be able to generate predictions that are indepen-
dent of the current sensory and motor state and other current facts, the systems face
a (symbol) detachment problem (Pezzulo and Castelfranchi, 2007).

3.2 Potential Benefits of Anticipatory Mechanisms on
Cognitive Functions

We now illustrate the benefits of the incorporation of anticipations in several cog-
nitive mechanisms, illustrating them with examples from natural and artificial cog-
nitive systems. We start bottom-up from the hypothesized lowest level anticipatory
processes to the highest, most abstract ones.

3.2.1 Effective, Context-Based Action Initiation

As discussed in Chapter 2, two kinds of anticipation can be distinguished in goal-
oriented action selection: effect anticipation and start anticipation (Hoffmann,
2003). Effect anticipation refers to the decision of which goal to fulfill (the end)
given several anticipated possibilities and a current motivational state that priori-
tizes the options. Start anticipation refers to the anticipation of the starting condi-
tions that lead to the selection of that action (that is, the mean) that is most likely
most effectively going to satisfy the end given the current context. Certainly, an
actual action selection process, however, is not really that sequential. Goal selec-
tion must consider the current context to ensure that the goal is achievable—seeing
that we usually do not come up with a current goal that is absolutely unachiev-
able (although we can dream up such goals of course). However, the advantage of
goal-based action selection is that context can be flexibly accounted for during goal
selection (which goals are currently achievable considering the context) and during
the suitable action selection (which is the best action or action sequence to achieve
the goal considering current context-based constraints). The sensorimotor redun-
dancy resolving architecture SURE REACH, for example, illustrates this flexibility
very effectively on the control task of a redundant arm (Butz et al., 2007a; Herbort
and Butz, 2007).

An approach that combines multiple experts and consequently achieves great
behavioral flexibility was introduced in Wolpert et al. (1995) and Wolpert and
Kawato (1998). In those works, forward and inverse models are coupled. The cou-
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pled forward-inverse models specify alternative motor plans, which entail alterna-
tive hypotheses about the context (for example, lifting a full glass or an empty glass),
and they compete for gaining motor control. The prediction of the right sensori-
motor flow in a forward model is used for the evaluation of the hypotheses and
the determination of the current best forward-inverse couple, whose inverse model
then gains control. Combinations of forward and inverse models have been used in
robotics both in distributed approaches (Tani, 2003; Tani et al., 2004) and in localist
ones (Demiris and Khadhouri, 2005; Mohan and Morasso, 2006; Pezzulo and Calvi,
2006a; Tani and Nolfi, 1999; Wolpert and Kawato, 1998).

While expert selection and context-based adjustments may be based on current
sensory states, they are often based also on future expected states. Psychological
experiments have shown that current behavior always adjusts to both the current
circumstances and their expected consequences (Fischer et al., 1997; Kunde et al.,
2004). The anticipatory behavior adjustment is then usually termed preparatory be-
havior. For example, in the anticipation of a heavy load, we adjust our grip and
muscle tension to still be able to hold and lift the object in question. Thus, behavior
is adjusted not only based on the currently observed context, but also on predicted,
relevant context.

3.2.2 Faster and Smoother Behavior Execution

Actions may not only be selected (and initiated) on the basis of anticipations of their
effects, but anticipatory mechanisms (e.g., Kalman filters, Kalman, 1960) can also
be involved in their control and filtering on the basis of a systematic comparison of
expected and actually sensed inputs.

According to Adams (1971, pg. 132), anticipations can be used as a reference
signal for the control of voluntary acts:

Beginning the movement brings an anticipatory arousal of the [perceptual] trace, and the
feedback from the ongoing movement is compared with it.

The availability of this perceptual trace before actual sensory feedback is very suit-
able to stabilize dynamic systems. For example, Mehta and Schaal (2002) have
shown that forward models must be available to humans when balancing a pole
with their finger. They conclude that the most likely model available to humans
while balancing a pole must be a Kalman-filter-like system, since successful control
required the availability of a forward model and even shortly interrupted sensory
inputs could be compensated without any problems, which indicates a Kalman-gain
based combination of sensory and forward model information. This result is also
in line with state estimation experiments investigated in Wolpert et al. (1995). A
review on various control tasks also supports such a model, which continuously up-
dates the unfolding control strategy based on sensory and forward model feedback
and differences between the two (Desmurget and Grafton, 2000).

Besides the filtering aspect of a Kalman filter, it has also been shown that we use
forward models to cancel out self-generated stimulus aspects. Smith predictors were
previously used for this purpose, in which a forward model mimicked the plant and
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canceled out predictable parts of sensory feedback. This permits the use of (only)
the unpredictable parts of the feedback for correcting errors within the feedback
loop (Miall and Wolpert, 1996). Although Mehta and Schaal (2002) suggest that
Smith predictors cannot be applied for the control of unstable equilibrium points
(such as pole balancing or also keeping the balance while standing), canceling out
own sensory effects still appears necessary in various cases, as strikingly illustrated
by the fact that we are not able to tickle ourselves (Blakemore et al., 1998).

In robotics, there are many examples of anticipation for the control of action.
For example, Mel’s (1990) robot, Murphy, can exploit efference copies of motor
commands for generating simulated perceptual inputs and is thus able to maneuver
its arm robustly even in the partial absence of sensory stimuli.

Besides the capability to filter sensory input or to substitute delayed or missing
input, these anticipatory mechanisms also enable an easier detection of unexpected
inputs. Consequently, also the processing and the resulting behavioral adjustment
should be possible more quickly and more effectively. Several cognitive mecha-
nisms come into mind when unexpected inputs occur such as surprise (and, for
example, consequent quick [protective] reactions), contemplations of why the un-
expected feedback occurred, or the search for reasons and consequent behavioral
adjustments based on the drawn conclusions. We discuss these aspects in further
detail below.

3.2.3 Improving Top-Down Attention

Attentional processes are typically classified into bottom-up attention and top-down
attention. Bottom-up attention refers to attentional processes that are induced by
sensory events, such as sudden changes or movements in a scene (Pashler, 1998).

Top-down attention can focus the limited epistemic resources (the bottleneck
in cognitive processing) and gather (only) the information that is expected to be
salient (relevant for the current tasks in mind), which is often called selective at-
tention. This includes ignoring currently irrelevant stimuli and stimuli changes as
well as actively searching for goal related information and actively confirming or
refuting hypotheses and expectations. Top-down attention is the one that is likely to
be mostly controlled anticipatorily.

A simple form of such top-down attention can be found in priming. Studies in
different domains (see e.g., Anderson, 1983) reveal that the perception of a certain
stimulus co-activates related representations. This seems to be a rather diffuse effect,
which concerns perceptual, semantic, and contextual dimensions. Several authors
have then attributed this effect to widespread low-level associative mechanisms in
the brain that “[. . . ] take advantage of frequent trends in the environment to help in-
terpret and anticipate immediate and future events” (Bar, 2007, pg. 280). According
to the terminology introduced in Chapter 2, this kind of associative-based priming
is preparatory in nature and consists in STIMULUS → STIMULUS and not ACTION

→ EXPECTATION brain codes.
However, neuroimaging studies have shown that cognitive facilitation (e.g., in

perceptual tasks) also depends on associative predictions (Bar, 2004). Thus, prim-
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ing is not limited to simple stimulus associations but often has a predictive com-
ponent as well. Linguistic experiments have shown that this predictive associative
capability can be guided by various modules in the brain including language-based
predictors (Griffin and Bock, 2000; Bock et al., 2003). These and various other ex-
periments show that the capability of top-down attention leads to typical anticipatory
behavioral effects that can be very task specific and are usually highly goal-directed.
Hereby, the phenomenon of inattentional blindness may serve as the best example.
Inattentional blindness is most clearly illustrated in the infamous “gorilla experi-
ment” (Simons and Chabris, 1999). Asked to count the number of completed passes
of a basketball within a small group of players, most participants do not detect other
interesting events in the scene, such as the (slow) movement of a human in a gorilla
costume passing through the basketball players.

First implementations of such attentional effects are emerging. Along these lines,
Balkenius and Hulth (1999) implemented several systems in which attention is con-
ceived as a mechanism of selection for action. Thus, attention is oriented proactively
for the sake of gathering information useful for action. In a schema-based archi-
tecture presented in Pezzulo and Calvi (2006a), sensorimotor schemas for acting
and gathering action-related information are coupled. Perceptual schemas orienting
attention toward relevant inputs, whilst motor schemas are responsible for execut-
ing the most appropriate motor action given the sensory and motivational context.
Chapter 4 discusses further architectures and other facets of anticipation involved in
attentional processing.

3.2.4 Improving Information Seeking

Top-down attention is thus often guided by (associative) anticipatory mechanisms.
This is also highly necessary, since we are not able to process more elaborate infor-
mation in parallel, termed the “bottleneck of attention” Pashler et al. (2001). Thus, a
cognitive agent needs to select amongst the available information to be able to pro-
cess the selected information in more detail. Due to this bottleneck, we are destined
to seek the current most useful and relevant information in our environment, that
is, we are inducing epistemic activities ‘querying’ the environment for the sake of
testing hypotheses and predictions.

Kirsh and Maglio (1994) have called this kind of information seeking activity
epistemic actions, which consist in probing, controlling, and testing the environ-
ment for the sake of knowledge gain. Epistemic actions are performed by means of
pragmatic actions, which have, however, an epistemic finality instead of the usual
pragmatic one. For example, linguistic experiments have shown that given the task
of telling the time from a clock, eyes scan the clock differently dependent on which
language the participants use to tell the time (Bock et al., 2003). Thus, participants
are searching for the time information displayed by the clock in anticipation of
which aspect of the time they have to utter first, dependent on the structure of the
language used. Similarly, rats were shown to use information seeking sensors, like
whiskers, which probe the environment before “entering” it (e.g., floor test before
putting the foot down, Mitchinson et al., 2006). This shows that top-down atten-



52 M.V. Butz and G. Pezzulo

tion does not only bias sensory processing but also directs actions towards gaining
further information.

Information seeking is generally necessary in any search scenario in which the
agent perceives only partial information about its environment. In this case, it is
destined to execute actions to gain further, currently hidden information (such as
moving a magazine to see if the missing keys are located under it). Active vision
research has studied this phenomenon in detail (Ballard, 1991; Thomas, 1999). It is
also the most obvious case of necessary information search because visual informa-
tion is maximally accurate only when perfectly in focus.

Anticipatory agents seem to be particularly well prepared to execute effective
epistemic actions since they can estimate the expected information gain for sev-
eral potential goals and thus choose that goal (and consequently necessary action)
that is expected to yield the highest information gain. We may call such a process-
ing method a goal-oriented perception (or constructive perception), since the infor-
mation is searched in the anticipation of an effective current state perception—or
construction of a state representation. Each action can be considered an epistemic
action, since it has the epistemic implication of unraveling hidden information. For-
mally, this process may be described as empirical Bayes performed by hierarchical
architectures (e.g., predictive coding architectures Kilner et al., 2007; Rao and Bal-
lard, 1999), in which expectations (priors) channelize epistemic activity.

Similarly but more generally, curious behavior may be induced in the general
search for, for example, food but also for general knowledge gain, which can also
result in learning improvements. To be more precise, curiosity may lead to the se-
lection of actions that are anticipated to improve the knowledge of the perceived
world, that is, to gain information about the world. When implementing curiosity,
we consequently need to design a scheme where those actions are selected that lead
to an optimal information gain, that is, actions from which we expect the results to
improve our own predictor or environmental representation most effectively. In this
case, the most important aspect seems to trigger those actions that lead to improved
predictive capabilities that are behaviorally useful (cf., Butz, 2002b; Schmidhuber,
2002, 1991a).

3.2.5 Improving Decision Making

Another relevant aspect is an investigation of the systems’ capabilities of exploiting
predictions for effective action decision making. Actually, the discussed epistemic
actions may already be considered as one potentially beneficial influence of antici-
pations on action decision making. However, there are other benefits besides biasing
action decision making for information seeking.

In general, planning and deliberation, as defined in several AI systems, can be
considered an anticipatory mechanism. However, in the last years consensus has
grown about the fact that deliberation (and rationality in general) are bounded. This
means that only few options can be considered at a time and these options conse-
quently need to be chosen heuristically. Thus, while exhaustive planning appears
inapplicable, the capability of generating partial future predictions and of adjusting
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behavior according to these predictions can be a strong benefit for anticipatory be-
havioral systems. The problem is only how to select which parts of the future to
explore before acting.

One way to bound anticipatory mechanisms is what was previously called pre-
ventive anticipation (Davidsson, 1997, 2003), that is, anticipation that only occurs if
the predicted usual behavior leads to an undesired situation. In general, simulating
the expected cause of events may lead to the activation of memory traces that indi-
cate unpleasant events and thus cause the agent to prevent this event from occurring
in the first place. For example, a child may stop her hand long before it reaches a
fire thanks to the anticipated feeling of pain that has been previously experienced
and stored as a memory trace of a bodily sensation—a somatic marker according
to Damasio (1994). This mechanism permits the prevention of possible dangers by
stopping actions whose predictions activate negatively marked bodily states.

Besides the prevention of danger, though, other motivational influences from pre-
dicted futures may positively influence behavior decision making. To accomplish
this, utility information may be merged with predictions to be able to generate op-
portunistic behavior, shape action preparations, and thus predispose action decision
making. Essentially, any motivation or emotion may be linked to certain environ-
mental properties. The activation of these properties may then induce the activation
of action patterns that lead to the activated goals and consequently bias action de-
cision making towards executing actions that lead to positive, motivationally linked
states.

In the robotics community, Shanahan (2005) has explored the possibility to gen-
erate long-term predictions related to current active courses of action in order to
receive ‘feedback from the future’, for example, with a mechanism similar to the
somatic markers. Davidsson (1997) showed that preventive anticipations can also
be helpful in competitive as well as cooperative multiagent scenarios. Similarly,
Hesslow (2002) suggested to run actions ‘in simulation’ to be able to compare their
possible outcomes before really executing them, which he called simulative plan-
ning. Hesslow’s (2002) simulation hypothesis has been recently tested in simulated
and robotic settings (Stephan and Gross, 2003; Weber et al., 2006; Ziemke et al.,
2005). In these studies, multiple candidate long-term plans are generated, for exam-
ple, by chaining forward models (Hoffmann and Möller, 2004), and are compared in
order to select the best one. Gross et al. (1999) use internal simulation of the sensory
consequences of multiple possible motor actions to perform robust planning in the
presence of noise. Yet another similar methodology for using simulative planning in
order to select the action to perform in the real world is described in Vaughan and
Zuluaga (2006).

Another interesting possibility provided by anticipatory and in particular simu-
lative mechanisms is to work offline, that is, to decouple from the current sensori-
motor cycle and simulate interesting past and potential future episodes in memory.
The anticipatory representations provided by available forward models can not only
be used online for the selection of action, but also for more complex functionalities
such as offline planning. Possible outcomes of events can be simulated and com-
pared offline by exploiting the same machinery involved in online visual and motor
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planning, but without sending commands to the effectors. During this operation the
expected stimuli replace actual ones and serve as inputs for generating predictive
chains. Interestingly, Butz and Hoffmann (2002) have shown that similar action de-
cision making influences can be induced by short-term planning or by offline simu-
lative mechanisms. Both mechanisms yielded simulated behavior in an anticipatory
behavior system that was comparable to the behavior of rats in advanced condition-
ing experiments (Colwill and Rescorla, 1985, 1990), which showed that also rats
use internal predictive models of their environment for anticipatory action decision
making.

3.2.6 Object Grounding, Categorization, and Ontologies

According to constructivists like Piaget (1954) and interactivists like Bickhard
(1998), objects are an autonomous discovery of cognitive agents. The anticipation
and verification of object behavior can lead to the insight of object permanence and
to autonomous construction of cognitive reality. Agents can interactively enlarge
their ontology by learning new synthetic items, which are conceived as the common
cause of a set of related interactions. Learning new synthetic items opens the possi-
bility to learn more and further abstract concepts or develop conceptual ontologies.

Drescher (1991) has done pioneering work on concept formation by agent-
organism interaction and its prediction. Another account of concepts formation, and
the development of hidden states, is proposed by Morrison et al. (2001); here the
central idea is that concepts support accurate prediction.

Roy (2005) has proposed a concept of symbol grounding (Harnad, 1990), which
depends on two mechanisms relating agent and environment: causation (from en-
vironment to agent) and anticipation (from agent to environment). According to
this idea, concepts for objects which are, for example, reachable or graspable are
grounded by schemas, which regulate actual behavior and, at the same time, en-
code predictions of the consequences of an expected interaction. Roy et al. (2006)
have used anticipatory sensorimotor representations that are able to ground concep-
tual knowledge such as the words ‘red’, ‘heavy’, and ‘cup’. They have built the
robot named Ripley, which is able to build up representations of objects based on
their sensorimotor structures and to exploit (e.g. associate) those representations in
order to manipulate (e.g. pick up) the objects, on the basis of verbal instructions,
which are understood in sensorimotor terms. Although this anticipatory approach
is very promising, it currently lacks fundamental learning and adaptive capabilities.
Nonetheless, the currently observable behavior of Ripley is very impressive and
based on anticipatory, sensorimotor grounded representations.

Hoffmann and Möller (2004) and Hoffmann (2007) conducted a series of robotic
experiments that illustrate how internal simulation of possible trajectories can be
used to ground concepts related to navigation. For example, distance from obsta-
cles (‘far’, ‘close’) is grounded and estimated by running simulations until they
encounter the obstacle. Dead-ends are recognized through simulated obstacle avoid-
ance, while passages are grounded in successfully terminated simulations of naviga-
tion. These experiments illustrate that objects can be conceptualized as (expected)
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interactions with the environment by reenacting (really or in simulation) internal
forward models that serve for motor control.

In the ART (adaptive resonance theory) framework (Carpenter and Grossberg,
1988), bottom-up signals and top-down expectations are used to self-organize cat-
egories and resolve the stability-plasticity dilemma. On the basis of the theory of
perceptual symbols (Barsalou, 1999), Pezzulo and Calvi (2006b) show how percep-
tual and abstract categories can be evolved by a situated agent that interacts with its
environment. Schenck and Möller (2006) use visuomotor anticipation for navigat-
ing visual scenes: objects and shapes are recognized by means of their compliance
to certain sensorimotor transformation produced by the movements of the camera.

Finally, anticipation can be used for distinguishing self-produced motion from
sensory stimuli, which are caused by interacting with objects in the environment.
Developmental psychologists have shown that children at early stages fail to distin-
guish events that are under their control from events that are not. They accomplish
this task only after the development of a full fledged body schema: it is only by
understanding the boundaries of one’s own predictive capabilities that it is possible
to discriminate self from others and from the environment (Maravita et al., 2003;
Piaget, 1954). The capability of distinguishing self from others and the environment
is also very important to enable efficient (anticipatory) social interactions, which are
further discussed below.

Robotic studies (Bongard et al., 2006a,b) illustrate the evolution of body schemas
by means of interactions and their anticipation. In a robotic experiment, Mohan
and Morasso (2006) illustrate how body schemas can be extended (for example, by
holding a stick in the hand) and adapted to new situations by adapting its predictions.

3.2.7 Social Abilities

While the aforementioned benefits focused on individual behavioral aspects, antic-
ipations appear to play also a highly important role in the development of efficient
social interaction, such as imitation, perspective taking, joint attention, intentional
action understanding, and even language. In the following paragraphs, we distin-
guish between simpler forms of social interaction, in which we include imitation,
perspective taking, and joint attention, and more complex forms of interaction, in-
cluding trade and language.

Imitative Social Interaction Social capabilities, such as imitation, perspective
taking, and joint attention are certainly crucial for the development of efficient so-
cial interaction and are supposed to rely on a neural substrate, which is also involved
in other future-oriented activities. Meltzoff and Moore (1997) suggest that children
learn to imitate in four phases: (i) motor babbling, and the formation of a body
schema, (ii) understanding and imitation of body movements, (iii) understanding
and imitation of actions on objects, and (iv) understanding and imitation of inten-
tions.

Many computational studies exist on these themes (Breazeal and Scassellati,
1999; Dautenhahn and Nehaniv, 2002; Demiris and Hayes, 1996; Kaplan and
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Hafner, 2006; Oztop et al., 2005; Scassellati, 1999) and in many cases common
anticipatory mechanisms have been developed for the control of action, imitation,
and attention. For example, Johnson and Demiris (2005a) have developed Hammer,
a system which uses several coupled inverse and forward models for generating ac-
tions and for imitating actions performed by others. In this case, the perceptual input
is firstly processed by the forward models. The forward model that currently yields
most accurate predictions activates its related inverse model, which is thus able to
generate a comparable behavior (that is, a behavior which would have produced the
same perceptual input).

Johnson and Demiris (2005b) demonstrate how to implement perspective taking
by simulating the other’s perspective. The ingredients are similar to those described
in the previous system, but an allocentric map of the scene is added. By simulating
the other point of view, the system is able to take its perspective and know, for ex-
ample, that while from its own perspective two objects are placed one in front of the
other, from the other point of view they are side by side. Demiris and Hayes (1996)
and Demiris and Khadhouri (2005) have studied intentional action performance and
recognition as well as imitation in real robots, with a specific reference to the mirror
neuron system.

The robot Ripley (Roy et al., 2006), using a similar simulation mechanism that
is realized in real time, runs an internal abstracted simulation of the scene, is able to
understand how objects appear from its own as well as from another’s perspective,
and to fulfill requests such as “touch the one on my left” or “touch the one on your
left” by building up abstract scene representations. The running internal model of
Ripley is also used for maintaining the state of known objects in the environment
in its memory. The approach is very similar to the typical small-scale models in
cognitive science apart from the fact that objects are understood by the robot through
anticipatory schemas describing (expected) sensorimotor consequences of possible
interactions and are not directly encoded as a collection of attributes or properties.

Complex Social Interaction The so-far discussed interactions are rather simple
forms of social interaction that require the derivation of the simple immediate cur-
rent intentions of another individual. Nonetheless, they all already require the ca-
pability to distinguish self from other, which seems only possible by anticipatory
mechanisms, as discussed above. Certainly, though, anticipations are also an essen-
tial ingredient to accomplish more complex social interactions. Such more complex
interactions are necessary, for example, for the development of more complex forms
of communication including language (Arbib, 2005) and more sophisticated trading
interactions (Gomez et al., 2007).

While simple forms of coordination, cooperation, and competition may be pos-
sible without any explicit anticipation of longer term effects, it has been recently
shown in the neuroscientific literature that resonant neural structures, such as mir-
ror neuron systems, are deeply involved in the creation of a social space, in which
one’s own and other’s actions can be recognized and interpreted intentionally and
separately (cf. Arbib, 2002; Gallese, 2001). Anticipatory mechanisms enable the
recognition and understanding of other individuals and, essentially, also enable the
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derivation of their intentions and consequently necessary re-actions (such as, flee or
fight when aggressive or hostile, interact or trade when friendly).

Another capability that requires anticipation in the social domain, specially in
the philosophical literature, is mind reading and the theory of mind. In Chapter 2 we
have discussed how taking the intentional stance (Dennett, 1987) permits the gen-
eration of predictions about other’s behavior on the basis of one’s own knowledge
about other’s beliefs and goals and not simply on the basis of the observation of
their current actions. Cooperation on common tasks (e.g. hunt) is significantly en-
hanced by mutual understanding and anticipation. More complex forms of cooper-
ation, such as trade, also depend not only on the anticipation of immediate actions.
For example, the recognition of another individual and the memory of past inter-
actions with that individual enable the expectation of the other individual’s future
behavior, which allows more complicated (‘fair’) trade interactions, building a trust
model.

Several researchers have discussed how anticipations may permit the develop-
ment of language (Arbib, 2005; Gardenfors, 2004; Gardenfors and Orvath, 2005;
Swarup and Gasser, 2007). In relation to trade, the hypothesis is that trade can ex-
tend to the trade of (more abstract) information, such as the location of water, prey,
hiding places, or enemies. Moreover, anticipation enables the further teaching of
individuals, not only through better learning by imitation but also through more
abstract learning and student-teacher like interactions.

As of now, no computational system exists that is able to pair the complexity of
most social abilities described above. Most work in social robotics focuses on sim-
pler forms of collective behavior, for instance those exhibited by social insects—
some examples of which can be found in evolutionary robotics (Nolfi and Floreano,
2000) and swarm intelligence (Kennedy and Eberhart, 2001). Anticipatory mecha-
nisms have received little attention in the realization of these forms of coordination
and cooperation: the emphasis is on embodiment, dynamic agent-environment cou-
pling, and self-organization. It remains to be demonstrated how these methodologies
can scale up to more complex forms of social life that exist in nature—for which
we expect that the usage of technologies based on anticipatory representations and
mechanisms will be inevitable.

3.2.8 Learning

Besides the various anticipatory influences on behavior, also learning may very well
be influenced. Anticipations may improve behavioral learning as well as the learn-
ing of (further) predictive representations. We distinguish the following potential
influences:

• indirect learning influences,
• direct model learning influences, and
• direct behavior learning influences.

In the first case, predictions may shape internal learning structures in certain ways
that may be advantageous for future learning. In the second case, model learning
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may be improved by focusing learning, ignoring irrelevant or unpredictable inputs,
delegating learning responsibilities more effectively, estimating feedback reliability,
and biasing learning to explain unexpected events. Finally, the predictive model
may be used directly to structure behavioral patterns offline or use it as a planning
mechanism. Witkowski (2003) provides a review of the anticipatory and predictive
elements inherent in the most known forms of learning.

Indirect Learning Influences While indirect learning influences may occur and
are expected to suitably organize hierarchical predictive and representational struc-
tures, and control programs in particular, to the best of our knowledge, concrete ex-
amples of such effects are sparse. An example of implicit anticipatory shaping can
be found in the robot Alvinn (Pomerleau, 1989), for which it was shown that adding
a predictive component to the control structure, which consequently co-structures
internal network representations, improves the supervised learning of a control task.

Model Learning Influences Schmidhuber (2002) discusses possible strategies to
be adopted by artificial systems in order to focus learning efforts on the predictable
components of spatio-temporal events. The capacity to predict and to discriminate
between predictable and unpredictable elements in the environment is also fun-
damental for meta learning mechanisms such as curiosity (Oudeyer et al., 2005;
Schmidhuber, 1991c).

Anticipation can also be used for learning ‘hidden structures’ in data series. El-
man (1990) firstly showed that a connectionist network can learn the formal struc-
ture of language, its syntax and semantics, by learning to predict the next word,
without any innate knowledge. A similar methodology has been applied to a series
of stimuli sensed by robots, which also have a rich structure. As shown by Pierce
and Kuipers (1997), by learning to anticipate the effects of its actions, a robot can
learn a rich hierarchical model of the robot’s sensory and motor apparatus, such as
position and type of its sensors and the degrees of freedom of its effectors. This
knowledge can bootstrap the representation of own body schema.

Other approaches that learn predictions to further guide learning describe a hier-
archical RNN system in which novelties (for example, a corner at the end of a corri-
dor) are detected thanks to predictions generated at multiple levels (Nolfi and Tani,
1999; Schmidhuber, 1992a). König and Krüger (2006) illustrate how discretization
and symbol formation may depend on anticipation-based feature selection and data
compression. Further methods may be found in the most recent post-workshop pro-
ceedings on anticipatory behavior (Butz et al., 2007b).

Attention can also have highly important learning influences and thus also, in
particular, anticipatory top-down attention. Attention has been shown to be manda-
tory to enable more elaborate and detailed learning. Similarly, the lack of predictive
capabilities disables filtering and thus better learning. In the mean time, attention
enables and facilitates the understanding of relevant environmental changes and par-
ticularly unexpected changes.

Expected and unexpected changes seem also crucial for learning and autonomous
development. Unexpected changes in different dimensions should be associated
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since they are most likely correlated for the sake of learning novelties. Surprises,
or the detection of unexpected events, should lead to curious behavior and conse-
quent epistemic actions, which in turn can lead to the detection and learning of new
correlations and interdependencies in the environment.

Faster Learning by Internal Simulation and Hypothetical Thinking Not only
anticipatory and imaginative capabilities can be used for action selection and con-
trol, but also for learning from ‘imaginary’ self-generated experiences. Tolman
(1932) indicates vicarious trial and error, that is, learning as if the experience had
really happened, as an essential trait of purposive behavior. Jordan and Rumelhart
(1992) have explored these ideas with computational systems. Computational sys-
tems such as DYNA (Sutton, 1990), XACS (Butz and Goldberg, 2003), and NN-
based internal RL learning (e.g. Baldassarre, 2002b, 2003) indicate that learning
by internal simulation is faster than to execute all in the environment. Bakker et al.
(2006) have realized a reinforcement learning vision-based robot that learns to build
a simple model of the world and itself. To figure out how to achieve rewards in the
real world, it performs numerous ‘mental’ experiments using the adaptive world
model. Butz and Hoffmann (2002) have shown that internal simulations or online
behavioral predictions are necessary to simulate the behavior of rats. In the case of
internal simulations, internal motivationally-based reward triggers were necessary
to allow effective behavioral adaptation.

In a sense, all learning includes some form of prediction. Reinforcement learning,
for example, can be used to learn a predictive model of the world dynamics and cal-
culate expected reward. In their seminal paper, Sutton and Barto (1981b) introduced
a framework for temporal difference learning, which was successively developed
(Sutton, 1988; Doya, 1996). However, most forms of learning, including several re-
inforcement learning techniques, include only implicit forms of anticipation. More
recently, the RL community has introduced the concept of predictive state represen-
tation (Littman et al., 2001; Wolfe and Singh, 2006), which has been shown to be
effective in learning (Wolfe et al., 2005) and planning (James et al., 2004). Predic-
tive state representations are also similar to Observable Operator Models (Jaeger,
2000, 2004). Both approaches represent states based on currently valid predictions.

Model-based RL algorithms (Sutton and Barto, 1998) use explicit predictive
models of their environment enabling the adjustments of behavior offline as well
as online during environmental interaction. The most prominent architecture of that
type is the Dyna-Q system (Sutton, 1991), which originally used a tabular repre-
sentation of the encountered environment to be able to adjust reinforcement values
more effectively. While Dyna-Q was not able to generalize over states and actions,
the anticipatory classifier system autonomously learns and generalizes situation-
action-effect rules (Stolzmann, 1998; Butz, 2002a) and can use those for effective
behavioral adjustments—online or offline (Butz and Hoffmann, 2002).
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3.3 Arising Challenges Due to Anticipations and
Avoiding Them

Despite the potential advantages of anticipations, possible disadvantages and novel
challenges due to anticipatory processes should not be neglected, either. Certainly,
the generation of predictions always comes at a cost. If prediction is highly inac-
curate or even impossible, it is most likely better not to bother and rather to act
reactively based on the current knowledge of state. In the following, we discuss var-
ious possible disadvantages mainly stemming either from cases in which anticipa-
tions are not helpful so that it is disadvantageous to generate (useless) predictions,
or from cases in which predictions are not sufficiently accurate and consequently
misleading in the resulting anticipatory process.

One aspect of a potential disadvantage of anticipatory processes is the fact that
automatic control processes can be much more effective than anticipatory control
processes. That is, blindly executing a certain motor command sequence can be
expected to be much faster than an effect-guided execution—simply due to the ne-
cessity to process and combine more sources of information. Thus, when speed is a
crucial factor, automation seems necessary and, anticipatory behavior may become
increasingly automatized by means of behavioral training.

Early AI research has been criticized for the use of internal models for the se-
lection and guidance of actions as well as typically very symbol-oriented represen-
tations. Building a complete model of the environment can be very costly and even
completely impractical. Using a model of the environment for decision making by
means of planning techniques can lead to an exponential scale-up and consequently
is often intractable. Thus, anticipation in the sense of planning requires useful model
representations that focus on behaviorally useful aspects of the environment. These
aspects may then be modularly and hierarchically exploited to induce maximally ef-
fective action decision making. Plain first-order logic based reasoning or symbolic
planning, on the other hand, are bound to be ineffective in natural environments.

Given a suitable predictive model representation of the environment, anticipa-
tory attention mechanisms need to be employed for effective sensory processing
and knowledge inference, as discussed above. However, even if this process is max-
imally effective in some sense, it might prove ineffective in other tasks—as ex-
emplified in the overlooked gorilla when counting basketball passes (Simons and
Chabris, 1999). Thus, attention and anticipatory focus control can be advantageous
to re-act more quickly and more effectively to relevant incoming stimuli, but it can
also cause distractions so that important information may be misinterpreted or to-
tally overlooked. Such attentional errors can have negative impacts on immediate
behavior, action decision making, reasoning, and learning.

Also, anticipatory mechanisms may cause unwanted interferences when the pre-
dictive information is inaccurate or ill-timed. Especially in control problems it is
highly important that timely information is available. Given predictive information
is delayed or inaccurate, control processes might undergo interferences due to the
anticipatory information source—actually a counter-effect of why the anticipatory
information was incorporated in the first place, that is, to stabilize control.
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Such unwanted interferences are certainly not restricted to causing instabilities in
immediate control processes. Also action decisions may be strongly and negatively
influenced when the predictive model is inaccurate. Just imagine the decision to still
cross the road with a car approaching and underestimating the car’s speed. Since
our predictive models are certainly not perfect, it may come as a surprise that we
still cross the street with cars approaching (in the distance). As has been argued by
many researchers, the brain is a Bayesian processing systems that also represents
the certainty of its predictions (Deneve and Pouget, 2004; Knill and Pouget, 2004),
which can help to prevent such decision errors and may prevent unwanted inter-
ferences also in control processes. Bayesian information processing also underlies,
essentially, the idea of Kalman filtering, which integrates information based on its
estimated reliability (Kalman, 1960).

Such anticipatory errors can also extend into the social sphere. If we misinterpret
the behavior of others as a (not necessarily physical) threat, we can sometimes re-
act absolutely inappropriately being unnecessarily mean or excessively friendly. On
an immediate cooperative level one might remember an occasion where one person
thought the other person would hold the glass (still, or by now), realizing the mistake
only when the glass already smashes on the floor. Also on a trading level issues like
treachery seem to be an effect of ill-guided predictions. A person may pretend to
be your friend making you believe in a certain fact and later on may use your false
believe, effectively “pulling the wool over your eyes”.

Thus, while anticipations may be advantageous in several respects, it should be
clear that not all processes are best accomplished with anticipations involved. Once
things have become automatized, anticipatory execution of certain actions may be
much less effective and much slower than the execution of the (learned) automatic
process. Planning processes can only be employed when effective representations
are available. Anticipatory attention needs to be employed with care to avoid the ig-
norance to certain important environmental facts. Similarly, other anticipatory inter-
ferences may need to be prevented possibly employing rather pessimistic reliability
estimates of predictive information sources. Finally, also during social interaction
anticipations need to be employed with care to avoid misunderstandings, ineffective
cooperation, or being fooled.

3.4 Conclusion

This chapter has pointed out several advantages but also potential disadvantages
of anticipations in cognitive systems. Generally, we distinguished between advan-
tages stemming from the possibility to form and maintain multiple representations
of states and thus potential realities, the capability to act goal-oriented in various
senses, and the potential to bootstrap complex cognitive capabilities based on sim-
pler, predictive representations. The necessary capability to represent multiple reali-
ties is a requirement to be increasingly anticipatory and also to be able to distinguish
self from other during social interaction. Future oriented capabilities are those that
make the cognitive system better prepared for future events due to (limited) knowl-
edge about the future. Moreover, better adaptivity is enabled due to better detection
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and processing of unexpected events, the enabled distinction between self and other,
and the possible substitution of delayed feedback information. Finally, anticipatory
representations appear to be the useful basis for the representation and for the de-
velopment of increasingly complex cognitive processes.

The potential of such enhanced cognitive capabilities was then discussed and
detailed. We started from very immediate potential benefits of anticipation includ-
ing immediate improvements on action initiation, flexibly adjusting to context and
state information, as well as benefits for action control, such as predictive control
and sensory filtering. Next, we highlighted potential positive influences on atten-
tional processing and related information seeking behavior. This lead us to potential
advantages in actual action decision making and goal selection. While these advan-
tages focused on individual decision making, we then also noted that anticipations
are highly important to accomplish simple and complex forms of social interaction.
Last but not least, we noted that anticipations can also help shaping and efficiently
learning predictive structures themselves.

Besides all the potential advantages, we also pointed out that anticipatory mech-
anisms may have unintended effects, such as very slow processing, instabilities in
control processes, misguided attention, inappropriate decision making, or destruc-
tive social interaction. These stem mainly either from the cost of generating pre-
dictions or from unexpected inaccuracies of the generated predictions. Despite such
potential drawbacks, it should be remembered that in most cases the disadvantages
emerge only out of the additional capabilities due to the involved anticipatory pro-
cess. Thus, while drawbacks may emerge, they are expected to be minor compared
to the system capabilities gained due to the involvement of anticipatory mechanisms.

In the subsequent chapters, we proceed with various case studies of artificial,
partially anticipatory systems and their potential with respect to the different an-
ticipatory mechanisms identified. These studies are intended not only to highlight
certain system capabilities but also to provide a first step toward the design of mod-
ular, hierarchical, and highly interactive cognitive system architectures, where each
module is realized with the maximally suitable representation, learning, and behav-
ior approaches available.
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Chapter 4
Anticipation in Attention

Christian Balkenius, Alexander Förster, Birger Johansson, and Vin Thorsteinsdottir

4.1 Introduction

Although attention can be purely reactive, like when we react to an unexpected
event, in most cases, attention is under deliberate control anticipating events in the
world. Directing attention and preparing for action takes time, and it is thus useful to
be able to predict where an important event will occur in the environment and direct
attention to it even before it happens. Another reason for the need for anticipation
is the processing delays in the visuomotor system. In the human system it takes at
least 100 ms to detect a visual target (Lamme and Roelfsema, 2000) and to just look
at a moving object, we need to anticipate its movement to control the muscles of
the eyes to move our gaze to the location where the target will be (von Hofsten and
Rosander, 1997).

The role of anticipation in attention can also be seen in the close connection
between attention and action (Balkenius, 2000):

Attention-as-Action Shifting the attention and gaze from one object to another
can be considered an action (Posner, 1980). The principle of attention as action im-
plies that attention can be controlled in a way similar to actions and it thus becomes
natural to use similar learning methods for attention as for action. Just as it is neces-
sary control action with anticipatory methods, is it also necessary to anticipate the
location of objects that will become the target of attention. The reason for this may
be that the object (1) is not yet visible, (2) is not in the visual field, or (3) is moving.

Selection-for-Action The object in the focus of attention, and gaze is used to set
the parameters for motor actions (Allport, 1990; Balkenius and Hulth, 1999). For
example, to reach for an object, we first direct our attention toward that object. Its
position in space is used to control the movements of the arm while the form of
the object is used to preshape the hand in aniticipation of the grasp (Castiello et al.,
1992; Castiello, 1999).
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Deictic Reference The focus of attention is used as an implicit argument for the
action. The focus of attention refers to the fixated object without explicitly repre-
senting all of its properties (Agre and Chapman, 1987; Ballard et al., 1997). Instead,
the attentional system sets up a sensory-motor transformation that controls action.
Since this transformation must be in place before the start of the action, this implies
that attention must anticipate action. This implies that fixation of attention can be
seen as an epistemic action that collects information for the next action.

Attention-as-Inhibition Attention involves inhibition of distractor objects and
previous targets as much as activation of new targets (Anderson and Spellman,
1995). A learning attention system must learn not only what to look at, but also
to ignore stimuli that do not predict any rewards.

In this chapter, we will describe a number of areas of attention control that require
anticipation. The different areas all include learning as an important component.
The simplest form of anticipation in attention involves learning what to look at to
receive a future reward. The learning, in this case resembles classical condition-
ing in that a stimulus itself predicts a reward. Alternatively, a particular stimulus
may predict where a rewarding stimulus will occurs. The required learning is this
case is instrumental learning and may be implemented using reinforcement learn-
ing algorithms. The anticipatory process is typically called visual cueing. A spatial
prediction may also include a temporal component that anticipates when a target
stimulus will appear or how it will move. Such predictions are necessary for suc-
cessful smooth pursuit. Finally, any of the above predictions must be influenced by
the current context or task.

4.2 Learning What to Look at

One area where anticipation plays a role in attention is the prediction of which visual
target will be rewarded. To attend to such targets it is possible to use a saliency map
that suggests the location of visual targets that predict a reward. This results in a
bottom-up system for attention selection since the flow of information goes from
the visual image to the final selection step.

A saliency map combines a number of visual feature maps into a combined map
that assigns a saliency to every location in the visual scene (Itti et al., 1998; Itti
and Koch, 2001a). Each feature map is typically the result of applying some simple
visual operator to the input image. For example, a feature map could consist of
an activity pattern that indicates all the vertical edges in an image. Other types of
feature maps may code for intensity, color, motion or some other visual feature. The
result of summing the different feature maps is that the saliency map will code for
locations in the image with many features. For example, a region with many edges
and bright colors will be more salient than a location without any such features.

The necessary feature extraction resembles processing in the visual area V1
where cells react to oriented visual contrast or to specific colors. In technical ap-
plications, this processing is implemented as two-dimensional convolution of the
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input image with different filter kernels that correspond to the receptive fields of
area V1.

Although not intended as a model of attention, different methods for extraction
of interest points (key points) in images play a similar role to such filters. The Harris
detector (Harris and Stephens, 1988) is often used in image processing to quickly
find regions of interest in an image. Subsequent processing is performed only in
these regions. An alternative method which is invariant to scale and rotation was
described by Lowe (2004). It uses differences of gaussians at different scales to
extract extrema points which are then tested for stability. These type of methods are
good candidates for technical applications where real-time performance is required.
It is also possible to use even simpler filters to extract oriented contrast at a single
scale in many cases (e.g. Balkenius, 1998; Kopp, 2003).

In principle, it would also be possible to also have feature maps that code for
more complex aspect of the scene. For example, Balkenius (2000) suggested that a
sensory buffer with much the same role as the saliency map could consist of a visual
code at many different levels ranging from individual features to objects.

An early system for directing attention by bottom-up means used a generalized
symmetry operator (Reisfeld et al., 1995). It was demonstrated that the operator
would find regions in images that naturally attracts attention such as faces, eyes and
other symmetrical objects. The model demonstrates that more complex properties
such as symmetry can be useful in directing bottom-up attention. It is possible that a
bottom-up attention system would be more useful if this type of features could also
be detected at a lower level.

Since the concept of a saliency map was introduced, it has been incorporated in a
large number of models and theories (Itti and Koch, 2001a; Vijayakumar et al., 2001;
Rao et al., 2002; Balkenius et al., 2004; Hoffman et al., 2006; Singh et al., 2006;
Walther and Koch, 2006; Chen and Kaneko, 2007; Shi and Yang, 2007; Siagian
and Itti, 2007). Saliency maps have shown to be useful both as models of human
attention and for technical applications.

4.2.1 A Learning Saliency Map

We will here formulate a general saliency map framework that allows a saliency map
to learn what visual features predict reward. The model is based on the idea that it
is possible to weigh the different feature maps differently depending on what target
the system is looking for. To look for vertical lines, the feature map that detects
such lines would have a larger gain than maps for other features. Here we will use a
formulation of a saliency map S(x,y) as a linear combination of a number of feature
maps Fm convolved with a smoothing function G (Balkenius et al., 2004):

S(x,y) = G(x,y)∗∑
m

θmFm(x,y) (4.1)

The feature maps Fm can be the result of simple visual operators such as line and
edge detectors but can also be generated by more complex image processing algo-
rithms as described above. The gain values θm describe the weighing of each feature
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map. The smoothing function G is typically a gaussian or a box filter. This formula-
tion differs from alternative models that may only use the linear combination with-
out the smoothing (e.g Itti and Koch, 2001b; Navalpakkam and Itti, 2007) and has
the advantage that it is less sensitive to the exact location of the target features.

After calculating the saliency map it is necessary to select the next location to
attend to. One possibility is to do this deterministically by selecting locations in
sequence according to their salience (Itti et al., 1998). Alternatively, selection can be
based on a probability density function defined over the salience map. For example,
the location can be selected using the Boltzmann distribution where a temperature
parameter that determines how random the selection should be. When the location
has been selected in the image, a gradient ascend is performed on S to find the
closest local maximum in the saliency map. This partitions the position space into
a finite number of regions, each corresponding to a local maximum of S. Although
not strictly necessary, this makes the selected locations more stable which improves
visual processing in subsequent steps. Alternatively, an ε-greedy method can be
used where the maximum location is selected except at exploratory trials, which
occur with probability 1− ε (Sutton and Barto, 1998). At an exploratory trial, one
of the possible fixation points may be selected with equal probability.

These selection methods can be seen as computational simplifications of the bi-
ased competition that has been found in the nervous system (Desimone, 1998; Des-
imone and Duncan, 1995). It is also possible to implement this form of selection
using the interaction of competition and cooperation in a field of artificial neurons
(Erlhagen and Schöner, 2002). When a target has been selected it results either in a
covert shift of attention or in an overt saccade movement that reorientation the eyes
from one location to another.

Fig. 4.1 The saliency maps before learning (top) and after learning (bottom)
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Fig 4.1 shows the saliency map for a simple scene based on this model. Two
simple feature maps are used to detect horizontal and vertical lines in the image
and the saliency is a smoothed sum of these two feature maps using a box filter. In
most application of saliency maps a much larger set of feature maps are used for a
larger set of visual features. It is also common to have feature maps that operate at
different scales.

Although most models have not considered learning in the saliency map, it is
easy to see that by setting the gain parameters appropriately, it becomes possible
to tune the saliency map to different features and several models have used vari-
ous models to calculate the gain parameters directly (cf. Lee et al., 1999; Vickery
et al., 2005; Martinez-Trujillo and Treue, 2004; Treue and Martinez-Trujillo, 1999;
Navalpakkam and Itti, 2007).

Here we will describe a novel approach based on reinforcement learning. The
saliency map S can be seen as an approximation of a value function for reinforce-
ment learning. S(x,y) is thus an estimation of the reinforcement that will be received
if location 〈x,y〉 is attended. Unlike the standard action-value function in reinforce-
ment learning (Sutton and Barto, 1998), there is no state in this formulation. Instead,
each location in the image corresponds to an individual action that directs attention
to that location.

At each time step, the error in the value function is calculated as

δt = [rt (x′,y′)−St−τ(xt−τ ,yt−τ )] (4.2)

where τ is the delay between the fixation of a stimulus and the time when the corre-
sponding reinforcement is received. This delay is necessary since there will typically
be a substantial delay between the time when the salience map selects a particular
location and the time when reinforcement is received which may only occur after a
slow object recognition phase. This gives the model a predictive component.

The gain coefficients θm are updated to reflect the actual reinforcement received
and the value at the attended location using the learning rule

θm,t+1 = θm,t + αδtFm(xt−τ ,yt−τ ). (4.3)

A result of this learning rule is that gains corresponding to features that are included
in the target stimulus will increase in size while features that are part of the dis-
tractors will become less salient. This makes the resulting gain vector θ sensitive
to both the features of the target and the environment. This is more efficient than
simply using the parameters of the target to set the weights, and also more in line
with human performance (Navalpakkam and Itti, 2007). It differs from approaches
that only take the target features into account (Lee et al., 1999; Vickery et al., 2005;
Martinez-Trujillo and Treue, 2004; Treue and Martinez-Trujillo, 1999).

This form of learning is generally referred to as classical conditioning, which is
used by animals to learn a predictive relationship between a neutral stimulus and a
subsequent reinforcing stimulus (Dayan et al., 2000a). More specifically, the train-
ing of the gain parameters implements discrimination learning, where the model
learns to discriminate between the target and the distractors. The equations 4.2 and
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4.3 are identical to the Rescorla-Wagner model of classical conditioning except for
the addition of the temporal delay (Rescorla and Wagner, 1972). It should be noted
that many other learning rules are also possible and will lead to similar results (see
Balkenius and Morén, 1998).

The saliency map at the bottom in fig 4.1 illustrates how the saliency map has
changed as the result of reinforcing attention to the horizontal lines but not to the
vertical ones. The saliency is now much stronger for the reinforces stimuli than for
the non-reinforced distractors.

The learning saliency map described here is the first step toward a learning at-
tention system. Although it is able to speed up visual search considerably compared
to a total search of the scene (Balkenius et al., 2004), it only uses immediate visual
information that may be available in a scene. It is clear that a target is more easily
found if we also take into account spatial and temporal relations in the scene and
this is the topic of the next two sections.

4.3 Cue-Target Learning

Cue-target learning in humans is most often studied in a variant of the Posner task
(Posner, 1980). In this task, a cue first appears on a screen and is followed by the
presentation of the target stimulus. A cueing effect is considered to be found when
the time needed to find the target is lower after the presentation of a valid cue.

In direct cueing, the cue is located at (or near) the location where the target will
appear while in symbolic cueing, the cue typically appear at the center of the screen
and its identity indicates the location where the target will appear (Solomon, 2004).
For example, an arrow pointing to the right could be used as a symbolic cue that
indicates that the target will appear to the right. It is also possible for the whole
visual scene to act as a cue as is the case in contextual cueing (Chun and Jiang,
1998).

4.3.1 Cueing by a Single Stimulus

Several models have used reinforcement learning as a basis for cue-target learning.
Schmidhuber and Huber (1991) built an artificial fovea controlled by an adaptive
neural controller. The fovea had high resolution in the center and low resolution
in the periphery. Without a teacher, it learned trajectories causing the fovea to find
targets in simple visual scenes, and to track moving targets. The controller used
an adaptive input predictor (a limited kind of world model) to optimize its action
sequences. The only goal information was the shape of the target - the desired final
input. Since this reinforcement learning task is of the ‘reward-only-at-goal’ type,
it involves a complex spatio-temporal credit assignment problem. The latter was
solved using a recurrent network training algorithm.

Q-learning was used in the model of Goncalves et al. (1999) to control attention
based on multimodal input and reinforcement signals. The model includes subsys-
tems for long term memory, what and where processing and attention control. An
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interesting feature of the model is that it integrates attention and action in a straight
forward way.

Another model that uses reinforcement learning to control visual attention was
described by Minut and Mahadevan (2001). The Q-learning algorithm is used to
select the target locations in the image. Reinforcement learning was also used by
Shibata et al. (1995) to control the movement of a visual sensor over an image.
The goal of the system was to find the optimal location of the sensor for object
recognition. The same neural network was used both for object recognition and to
produce the sensory motion output.

Here, we will use Q-learning as the basis for the description of a cue-target learn-
ing system. Let us assume that we already have a bottom-up attention system of
the kind described in the previous section. That system will produce a sequence of
fixations in the visual scene and the idea is to use these actions as training for a
reinforcement learning system.

The current state s for the reinforcement learning system consists of a description
of the visual stimulus at the focus of attention and may include anything from a
simple set of primitive features to a complex object description. Through learning,
this state is associated with a number of actions a by learning the function Q(s, a)
which predicts the reinforcement that will be received if action a is taken in state s.
Like the stimulus coding, these actions can be at different levels of complexity and
here we will only consider a few basic cases.

Absolute Attention Shifts When the system is trained with absolute attention
shifts, each action represents a movement of attention to an absolute position in the
visual scene. This means that no matter where the visual cue appears, it references a
specific location. An example would be a verbal cue like “BOTTOM” which could
indicate that a rewarding stimulus will appear in the lower part of the scene. Like in
the saliency map, each location in the scene corresponds to a specific action. There
will thus be as many actions as there are potential target locations.

Relative Attention Shifts In most cases, it makes more sense to use relative ac-
tions. These are coded in relation to the current fixation point. An example would
be an arrow pointing down. The predicted target location in this case would depend
on the placement of the arrow. If it is to the left, it would indicate a target down to
the left, while the same cue to the right in the scene would indicate another target
location.

Timed Attention Shifts It is also possible to have different shift actions for dif-
ferent time lags between the cue and the target. For example, if we have divided
time into discrete steps, a single action a is replaced by a whole set of action
at+1,at+2, . . .at+m, where m is the horizon of the possible predictions. To parallel
the behavior of humans, the system can be trained to perform the attention shift just
before the target is expected to appear. This will results in anticipatory saccades.
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It is clear that the above notion of attention as actions will result in an enor-
mous number of potential actions and the normal training methods for reinforce-
ment learning would not be tractable. The solution is to use the bottom-up saliency
map as a training system. Since it produces a small set of states and actions to train
on, it immediately makes this framework viable. Furthermore, if the trained target
locations for an action are selected from the finite set defined by the gradient ascend
process in the saliency map, the space is further reduced.

4.3.2 Contextual Cueing

The visual context can be used both to predict the location of a target object and
for disambiguation if the visual pattern of the target does not contain sufficient in-
formation for identification. Torralba (2003) shows an example of a blurred visual
scene where it is clear from the context that the blob at the street is a car although
it is impossible to identity the blob out of context. This is a striking demonstration
of the importance of context in visual processing and a problem that often occurs in
artificial vision systems.

Siagian and Itti (2007) use low level gist (one glance) information to improve
the result of a saliency competition by reducing noise. The model uses background
features more than foreground to localize features retrieved by saliency competition.
In this way it was able to categorize different scenes with good accuracy. This model
is intended to cooperate with a model of selective attention using saliency maps.

Balkenius and Morén (2000) developed a model that differs from the others in
the respect that the context representation is assumed to be built up over time as
the visual scene is scanned. This model has been successfully applied to contextual
cueing (Balkenius, 2003) and habituation (Balkenius, 2000).

The model of Pomerleau (1994) also uses a form of contextual cueing. Saliency
maps are created using expectation of future input. A hidden layer in a neural net-
work, trained to perform a temporal sequential task, is used to predict what the next
inputs will be. The expectation of what the features will be in the next frame deter-
mines which portions of the next visual scene are attended to.

4.3.3 Fovea Based Solution

The fovea based solution uses a multiresolution fovea module in combination with a
long short-term memory (LSTM) recurrent neural network (Hochreiter and Schmid-
huber, 1997). The fovea module divides the given image into parts of different res-
olutions and different fields of view (see Fig 4.2), including a central fovea.

Fig 4.2Composition of a fovea image by dividing the original image in into dif-
ferent sub-images and reduce the resolution with respect to the position of the sub-
image. This data is given as input to the controller. The composed image in the right
side is only given for illustration.

Beside the biological inspiration, the fovea model has another advantage: It
highly reduces the amount of data without losing much information, because the
“interesting” part of the image is in the center of the fovea where the resolution is
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Fig. 4.2 Composition of a fovea image by dividing the original image into different sub-images
and reducing the resolution with respect to the position of the sub-image. This data is given as
input to the controller. The composed image in the right side is only given for illustration.

very high. The drawback of this model is that the full information is not available if
the fovea is not focused on the target. In this situation, the fovea has to do saccadic
movements until it finds the target position. Memory capabilities of the controller,
in our case a neural network controller, are essential in this situation to anticipate
present peripheral objects.

Fig 4.3 shows the performance of a neural network which accomplishes saccadic
movements with memory capabilities. A LSTM network is trained by a Stochastic
Policy Gradients Reinforcement Learning method (Wierstra et al., 2007). The task
is to find the triangle on a screen with a correct orientation. The scenario is inspired
by a work of Schmidhuber and Huber (1991). A correct (with an angle up) and an
incorrect (with an angle down) oriented triangle are randomly placed on the visual
field. The network looks for the correct triangle by generating saccadic movements
and stops if the correct triangle is in the center. Fig 4.3 shows a typical episode.
The saccadic movements consist of orthogonal small (1 pixel width) and large (10
pixels width) jumps. The saccades are slightly noisy in consequence of the stochastic
nature of the network.

The fovea based solution combines many of the properties of a contextual cueing
with the advantages of a fovea that is more sensitive at the fixated location. Since
the fovea approach allows the attention system to receive input from a large part of
the visual scene, this blurred input can serve much the same way as the context or
gist in the systems described above.

4.4 Attending to Moving Targets

The attention systems described above all deal with the environment as if it con-
sisted of stationary scene that may change from time to time. However, in reality,
everything is nearly always in motion, either because objects in the world move or
because the observer itself is moving. To direct attention toward moving objects it
is necessary to anticipate how the objects will move relative to the observer and this
problem must be solved by both biological and technical systems.
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Fig. 4.3 Finding the triangle task. (a) shows the randomly generated picture with two different
triangles. (b) is the input - the fovea view - for the network. The fovea is centered in the middle of
the image at startup. (c) shows the input with the focus on the incorrect triangle and (d) with the
focus on the correct triangle. (e) illustrates the saccadic path for finding the correct triangle.

What are the requirements of a system that needs to predict the motion of a visual
target? Consider a system that attempts to predict the position of a target object
based on a sequence of its previous positions. Such a system should learn a function
from a number of observed positions pt−n, . . . , pt−1 to the estimated position p̂t

at time t. Any of a number of learning algorithms could learn such a function by
minimizing the prediction error et = pt − p̂t . The learned function constitutes an
anticipatory model of the target motion.

We now add the constraint that the perception of the target, including its local-
ization, takes τ time units. In this case the problem translates to estimating p̂t from
pt−n, . . . , pt−τ , since the rest of the sequence is not yet available. In addition, this
means that the system only has access to the prediction error et after τ additional
time steps, that is, learning has to be set off until the error can be calculated and the
estimate of p̂t has to be remembered until time t + τ when the actual target location
pt becomes available.

The important point here is that a system of this kind will never have access to the
current position of the target until after a delay. Any action that is directed toward
the current target position will thus have to depend on the predicted location rather
than the actual one. This is further complicated by the fact that any action directed
toward the predicted location will also take some time to execute. For example, if
an action is performed with constant reaction time ρ , an action directed at p̂t at time
t will miss the target, since once the action has been performed the target will be at
position pt+ρ . Consequently, the system needs to anticipate the target position p̂t+ρ
already at time t when the action is initiated.

In summary, the system needs to keep track of the target at three different times.
The first consists of the currently observed set of positions pt−n, . . . , pt−τ that can be
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called the perceived now. The second is the anticipated now, that is, p̂t . This is the
actual position where the target currently is, but this is not yet accessible. Finally,
any action must be controlled by the anticipated future, that is, p̂t+ρ .

Although this looks like a very complicated way to handle time, unless the delays
τ and ρ are negligible, the use of some form of prediction is unavoidable. The delays
in the human brain are long enough to necessitate anticipatory models and this has
important consequences for how we learn to pursue a moving object with our eyes.

4.4.1 Models of Smooth Pursuit

Smooth pursuit eye movements are used to tracking moving targets and are stim-
ulated by the movement on the retina. Unlike saccades, smooth pursuit eye move-
ments are not under voluntary control and does not involve a shift of attention.
Instead, smooth pursuit appear to be more related to fixation of a stationary target in
that the same target is attended to all the time. For smooth pursuit to keep the target
stationary on the retina, it is necessary to anticipate how the target will move and to
place the focus of attention where the target will be at each point in time.

Singh et al. (2006) describes a model based on Itti and Koch’s model of selective
visual attention (Itti, 2000; Itti and Koch, 2001a) that includes motion processing.
They first computed motion saliency features using optical flow models (Lucas and
Kanade, 1981), but with poor results. Then they used the pyramidal Lucas-Kanade
sparse feature tracking algorithm (Bouguet, 2002) to detect corners in the scene (as
their targets had corners on them). They use Gestalt principles that fit the properties
of their targets to group features into objects. They model the fixation on moving
objects/smooth pursuit by encoding the tracking error obtained from foveal feature
update and finite optical flow window into a motion error salience map, called a
confidence map. There is an inverse relationship between the saliency of an object
and confidence of its position.

The model of smooth pursuit eye-movements of Shibata et al. (2001) uses a pre-
dictive model based on linear or non-linear regression networks to predict the behav-
ior of the target stimulus. A cascaded control scheme is used in which the predictor
sets the desired path for the eye controller.

The model clearly illustrates that anticipation is absolutely necessary for any
system using active vision in a realistic environment. Since the visual processing is
delayed, it is not possible to control the movements of the camera using traditional
feedback control. Instead, the direction of the gaze must be controlled by a model
that predicts where the target is now.

One limitation of this model is that it only allows a single model of target motion
although it would not be too complicated to allow several such models that could be
chosen depending on the circumstances. An open question is whether there should
be many models for different targets or if a single simple model is sufficient for
all cases. For example, a model which simply extrapolates the motion of the target,
possibly taking acceleration into account, may be sufficient. It is also possible that
much more complex models should be learned when the system has to observe
complicated but regular motion.
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An alternative model of smooth pursuit eye-movements was proposed by Balke-
nius and Johansson (2005). The main strength of this model is that it includes both
continuous and discrete target predictions. The model assumes that a linear predic-
tor is sufficient for normal pursuit of the target, but when certain events occurs, the
model learns specific expectations of the behavior of the target.

The model is thus a compromise between a continuous and a discrete model of
target motion. The main strength of the model is that the hybrid approach allows
it to learn complex scenes where the target may disappear and reappear or change
motion abruptly at certain locations. It also acknowledges that the modeling of target
behavior must occur in global and not egocentric coordinates.

4.4.2 Engineering Approaches

Here we describe the tracking problem in the task of tracking a moving ball. Ball
tracking is a very common, but challenging task for different applications like video
streaming, sports game automatic annotation, robot soccer etc. The ball is usually
small, has no special marks or characteristics which can be easily detected. It can
be mistaken for parts of the player’s bodies or is occluded by other objects. Even
the color and shape of it are unreliable, since they get blurred from the distance and
the fast movement of the ball. Yet another complication comes with the real time
requirement of most of the applications.

The classical engineering method to predict a moving ball are Kalman filters and
variants (Welch and Bishop, 2006). Kalman filters work great, if the ball is rolling
slowly on a flat ground. Prediction limitations become significant when the ball has
multiple states, e.g. jumping, slipping, or if the environment is more complex, e.g.
equipped with reflecting walls or a rough ground.

In addition to the time consuming model design of the environment a prepro-
cessing step is necessary to convert the real world sensor data, e.g. from a camera
image, to the abstract representation of the model: The ball position and speed has
to be detected, the positions of walls and other obstacles have to be computed as
variables of the model.

Some methods cover the strong nonlinear behavior of the tracked object by the
use of multiple model Kalman filters, e.g. Interacting Multiple Model (Blom, 1984;
Mazor et al., 1998) or Generalized Pseudo Bayesian (Blom and Bloem, 2004). Other
researchers are using particle filters as an alternative to Kalman filters. Particle fil-
ters are more general and they allow non-unimodal, non-Gaussian and non-linear
problems. Kwok and Fox have successfully used a Rao-Blackwellised particle filter
(RBPF) to predict the movements of a ball in a highly dynamic environment with
reflecting walls and other obstacles which influence the behavior of the ball (Kwok
and Fox, 2004).

A lot of research has emerged in the last years, all dealing with different methods
for ball detection and tracking under different environment properties and applica-
tion requirements. In general a ball tracking process can be divided into 4 interacting
steps: (1) Preprocessing of the visual scene, (2) visual ball model, (3) ball detection
and (4) ball tracking. Another related field is ball movement prediction, where the
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common problem of system delay and reaction time is overcome by predicting the
ball’s position in the future given some history data. This also can be used to sup-
port the tracking of the ball, since the ball in the video input has to conform to its
physical model of movement.

In the next sections, different methodologies for each of the ball tracking sub-
problems will be presented and discussed. The works described here usually cope
with more than one of these sub-problems, but rarely with all of them.

Isard and Blake (1998b) present a general object tracking approach, applied to a
simple example of a bouncing ball on a table. Kwok and Fox (2004) deal with real
time ball detection and tracking for the RoboCup AIBO league. Basketball tracking
is described by Ross et al. (2006). The RoboCup middle size league is the test bed of
Treptow et al. (2003), who detect and track a black-white soccer ball in real time. Yet
another ball game, tennis, is used as application scenario by Yan et al. (2005), who
present a ball tracking algorithm. In summary, the most important current works
span ball tracking and the different ball models (both physical and visual), which
will be presented in detail in the next sections.

Preprocessing Video input is a very unreliable data source, which has to be care-
fully pre-processed before a small and fast moving object like a ball can be detected
and tracked. Traditional approaches include background extraction (Yan et al., 2005;
Ross et al., 2006), color enhancement, color segmentation (Kwok and Fox, 2004),
sub-sampling, edge detection etc. A major drawback of all preprocessing methods
is their high computation requirements, since they need to be applied to the whole
video data. Therefore the algorithms need to be simple and fast.

Visual Ball Model Visual models can be roughly divided into color-based, pattern-
based and shape-based. Color-based approaches are dependant on the environment
and on previous knowledge about them. For example, Kwok and Fox (2004) use
a purely color-based ball model for the RoboCup AIBO league, where the ball is
expected to be bright orange and no other objects have the same color.

Ross et al. (2006) use a mixture of different classifiers to build a robust visual
model of the ball. Six different ball prototype patterns or patches, each of size 19x19
pixels, are learnt from examples. Additionally, the three main components of a PCA
over these patterns and background extraction are used to identify the ball. Treptow
et al. (2003) use Haar wavelet like features to learn the visual model of the ball from
examples. Adaboost is used to create a robust classifier using the single features.

Isard and Blake (1998b) apply B-spline shape fitting of the contour of the ball
model, without color information. Quality is measured by intensity gradient normals
on the contour. Yan et al. (2005) use a mixed shape and pattern-based approach.
Eclipse fitting and gradient vectors of the intensity of the pixels are used for training
a SVM to classify the foreground blobs.

Ball Detection Ball detection is done based on the visual model of the ball. There
are two different ball detection problems: initialization of the system, when the ball
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has to be found for the first time, and re-detection of the ball, when it is occluded
by other objects. The second case can be usually handled by the ball tracking ap-
plication itself by using a robust physical model of the ball, which describes its
movement.

Treptow et al. (2003) uses a particle filter based approach. When the ball has to
be detected for the first time, particles spread through the whole visual field and
slowly concentrate on the most promising regions based on the visual model of the
ball (see above).

Ball Tracking Treptow et al. (2003) uses a simple particle filter to track the ball,
without any supporting physical model. A particle filter is also applied by Yan et al.
(2005). However, a dynamic model of the ball is used, where the expected ball
movement is dependent on the distance to the players in the tennis match.

State-based approaches are used by Isard and Blake (1998b); Kwok and Fox
(2004); Ross et al. (2006). They all describe different states in which the ball can
be (rolling, bouncing, kicked, etc.) and either hand-code the state features and their
transition probabilities (Isard and Blake, 1998b; Kwok and Fox, 2004) or learn them
from examples (Ross et al., 2006). This powerful physical model is then used for
tracking the ball, supported by different probabilistic state-space models. The Con-
densation algorithm was introduced by Isard and Blake (1998a), much resembling
a particle filter with weights. A Rao-Blackwellised particle filter is taken by Kwok
and Fox (2004).

4.4.3 The State Based Approach

The anticipatory component of both the engineering approaches and in the cognitive
models either uses a state based approach or an approach based on prediction. In
this and the following sections, we introduce the basic assumption of these two
approaches with a simple example.

The following equation shows a toy example of a state based description of a
falling ball in one dimension. The variable pt represents the position of the ball
over the ground at time t and vt is its velocity. The state representation is made
in homogenous coordinates - hence the additional 1 in the state description. The
transition matrix describes the change of the state of the ball between time t and
t + 1. The parameter g is the gravitational acceleration of the ball.

⎛
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⎞
⎠ =

⎛
⎝

1 0 0
0 1 1
g 0 1

⎞
⎠

⎛
⎝

1
pt

vt

⎞
⎠ (4.4)

f we denote the state of the ball at time t with st and the transition matrix with M,
the general state based approach can be formulated as,

st+1 = Mst . (4.5)
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The beauty of this formulation is that if we want to predict the position of the ball n
time steps into the future, all we need to do is repeat the application of the transition
matrix. Thus,

st+n = Mnst . (4.6)

Now, let’s assume that the ball hits the ground, At this point in time, the above state
transition matrix has to be replaced by one that describes the bounce:
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g 0 −e
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1
pt

vt

⎞
⎠ (4.7)

Here e corresponds to the coefficient of restitution and the minus sign indicates that
the ball will change direction.

With the two transition matrices in place, it is possible to predict the position of
the ball at any point in the future given that we know when to select which transition
matrix. One possibility is to again use the idea of a context. In this simple example,
there are two contexts. Either the ball is in free fall or it is in contact with the
ground. The appropriate transition matrix must be selected for each context. If ct

is the context at time t, the state based model translates into

st+1 = Mct st , (4.8)

where ct selects the appropriate model at each time step depending on the context.
An obvious problem here is that this formulation assumes that the context at

time t is known beforehand. A more appropriate formulation would be to make the
context a function of the current state as expressed by the following formula,

st+1 = Mc(st)st . (4.9)

In this case, the context can be defined as a function that describes the local environ-
ment of the ball, for example, whether there is a surface where the ball will bounce
or not.

So far we have only considered a situation in which the models are already
known. We will now extend the state based framework to an unknown situation.
Let us assume that the ball has been observed for some time resulting in the time se-
ries p0 . . . pn. We want to construct the state transition matrices from this sequence.
This can be done using a large number of methods, but they all derive from the fact
that the state based model defines a linear system. This means that the least squares
method is applicable to the solution.

4.4.4 The Prediction Approach

An alternative to the state based approach is to instead view the problem as a predic-
tion task where the next position of the ball has to be predicted based on a sequence
of previously observed position. Let us assume for simplicity that we have access to
two consecutive positions of the ball pt and pt−1. To calculate the next position we
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can use the equation,

pt+1 =
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and for the bounce, we can similarly write
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For the linear prediction approach, the coefficients for the prediction matrix can be
estimated, for example, using the least squares method. Various iterative methods
are also possible. For example, Balkenius and Johansson (2007) used the least mean
squares method to fit the parameters for a linear predictor of this kind in a model of
smooth pursuit.

As in the state based approach, it is necessary to use different matrices for the
different contexts and the main problem is to partition the different training points
into sets that can be used to train the different predictors.

The predictor need not be linear as in the example above. In many cases it would
be more suitable to use a non-linear predictor since it may potentially be able to find
the two contexts from the data with the use of additional input variables. For the
non-linear prediction, some form of learning function approximator such as artificial
neural network has to be used.

4.4.5 The Fovea Based Approach

The following example shows a fovea based ball tracking implemented with a su-
pervised trained LSTM network. The environment is based on an Ikaros (Balkenius
et al., 2007) plug-in by Christian Balkenius. A ball falls down from a random posi-
tion with an random angle at the top of the screen and is reflected by the floor, the
sides or a horizontal bar (see Fig 4.4).

The basic idea of the task is to demonstrate a ball tracking method without an
explicit model of the physical behavior of the ball. Furthermore, also the non-linear
model switching, which is normally hand-coded (see Section ball tracking related),
is learned automatically. The setup is intentionally kept simple to focus the task on
the ball tracking part and not on the visual ball detection process.

Setup The visual scene is a 8 bit grayscale image with a size of 128 by 128 pixels.
The fovea has 2 levels of detail, each level has a size of 10 by 10 pixels. The centered
high resolution part has the same resolution as the image itself. In the surrounding
low resolution part each fovea pixel integrates the information from a patch of 8 by
8 image pixels.

The LSTM network has an input size of 200 values for the 2x10x10 fovea pixels ,
20 hidden LSTM cells and 4 output connections. Each of the two pairs of the output
values represents an offset to the target position of the ball relative to the current



4 Anticipation in Attention 81

fovea position. One pair delivers the offset to the current ball position and the other
pair predicts the position of the ball for the next frame.

The LSTM network is trained with 100 episodes of the falling and reflecting
ball. Each episode has a length between 67 and 179 frames. The mean length is 119
frames. This results in 11934 training samples. The test set consists of 2334 frames
split into 20 episodes with lengths between 80 and 162 time steps.

Fig. 4.4 Ball simulation environment. The normal environment data is seen on the left image. The
ball is represented by a small square. The reflecting objects are gray. The middle image illustrates
the fovea view of the same situation of the left image. The blue area shows the fovea’s invisible
area. The right image shows a typical episode. The green path represents the ball positions and the
red path the predicted positions.

Results In the beginning of the learning process the network is only able to follow
the ball for short time, before it loses it again. During this phase, best tracking
performance is achieved for strictly vertically falling balls and worst results occur
at the side walls of the environment. However, after some more training, the fovea-
based network is able to track also balls falling at any angle and reflected by the side
walls.

After the training is finished, the network has anticipated the behavior of the ball
in the particularly given environment and develops two useful properties: tracking
the ball when it is visible and imitating its trajectory when the ball disappears. In
the second case, the fovea is moving together with the assumed ball trajectory and
tracks the ball again as soon as it appears in its view. In summary, the network is
able to learn the behavior of the ball and use it for both tracking it and imitating or
predicting it.

4.5 Combining Bottom-Up and Top-Down Processes

An obvious shortcoming of bottom-up attention models is that they do not adapt
to the current situation, since they always direct attention to the same visual prop-
erties. This limitation has been addressed in various ways by different models by
including also top-down influences on attention. Note that most top-down models
also includes a bottom-up component which is often the larger part of the system.

Westin et al. (1996) describes an early system using both bottom-up and top-
down processes for the control of attention. The bottom-up processing uses nor-
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malized convolution to filter the input image. This method has the advantage that
it makes it possible to include the certainty of an estimate in the calculations thus
avoiding, for example, border effects and allow sparse or heterogeneous sampling of
the image. It also allows top-down influences to modulate the bottom-up processing
in a simple way by changing the certainty of each measurement or signal.

Another form of simple top-down influence was described by Balkenius and
Hulth (1999). A bottom-up attention system was enhanced with a simple learning
ability that would make the system direct attention to the type of stimulus that had
previously been rewarded. The system used a simple form of reinforcement tuning
to learn the desired target stimulus. The system was limited in that only a single
stimulus type could be learned and the system would thus not adapt to different
tasks or situations, but the idea of using reinforcement learning to tune a bottom-up
attention system can be useful also in more complex models.

A minimal form of top-down influence in a basically bottom up model was in-
cluded in the model of Choi et al. (2004). In the model, a human operator can train
the system to ignore certain features based on top-down inhibition. The top-down
system consists of a modified ART network that receives input from the saliency
map and may categorize it as uninteresting and subsequently inhibit it. The top-
down part of the model is very simple as essentially categorizes the independent
components used for the saliency maps. A more useful form of top-down inhibition
requires contextual control (see Balkenius, 2000).

Many models of top-down attention have been inspired by the human neurophys-
iology. A typical model of this type is the one proposed by Corchs and Deco (2002).
It includes a model of the primary visual cortex as well as visual area 2-4 and an
object recognition system corresponding to inferiotemporal cortex. It also includes a
spatial coding system that works in parallel to the object recognition pathway result-
ing in one “what” system and one “where” system. Both systems receives top-down
biases from a module corresponding to prefrontal cortex.

The model aims at reproducing data at a neuronal level, and as is usual with this
type of model, it is not clear how it could be extended to more realistic inputs and
outputs. Nevertheless, it suggests many ideas for the architecture of a biologically
inspired attention system. In particular, the disassociation into identification and
spatial processing is probably a required component of any attentional system as is
the local competition within each module of the system.

Deco and Zihl (2001) describe a model that combines bottom up and top-down
processing that addresses the problem of selecting both the scale and area of the
attended location in an image. It consists of a number of modules that process the
input at different spatial levels and can be viewed as hierarchical predictors at the
different spatial levels. This results in a sequential coarse to fine analysis of the
image. The main contribution of the model is that it shows that it is necessary to
process visual input at several simultaneous scales to be able to direct attention
either to global patterns or to local features.

Rao and Ballard (1999) introduced the idea of the visual cortex as a hierarchical
predictor. A number of processing levels make up a hierarchy of Kalman filters
where the feedback from the higher levels act as prediction for the lower levels. The
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model attempts to explain the behavior of classical and non-classical receptive fields
in the visual cortex. In their method, uncertainty about anticipations by components
of other components is estimated, affecting the amount of influence levels have on
each other (when the higher level is very certain that an event is going to happen
in a lower layer, it has more control over the lower layer than when it is not certain
at all).

Prediction is thus a fundamental aspect of these models. However, the top-down
influences are very direct and it is not clear how the model can handle complex
task-requirements since there are no temporal aspects in the basic model. Neverthe-
less, the framework of hierarchical predictive systems appears to be very fruitful for
future attention systems, Especially if anticipation over time could be included.

Spratling and Johnson (2004) developed a neurobiological model of attention in
cortex which is based on levels of interacting cortical modules. There is a biased
competition within each module which is influenced by top-down and bottom up
inputs. The model can reproduce some instances of foreground/background seg-
mentation and contextual cueing.

Navalpakkam and Itti (2003, 2005) extended the previous bottom-up model of
Itti and Koch with two types of top-down influences. One is a task specification
that is used to decide on which features are important in the scene and also on what
spatial locations should be attended to. The other is a system that attempts to find the
“gist” of the scene that can further guide the selection of a particular image region.
The model also includes a symbolic component that models long-term and working
memory.

These additions are necessary extensions of the original model, but it appears that
some of the additions follow a very different design philosophy than the original
model. However, the symbolic top-down systems suggests how more complex task
related control systems could interact with a top-down attention system.

In the model by Balkenius et al. (2004), a number of pre-attentive processing
stages were selected based on their computational efficiency and utility in finding
targets for the attention system. These bottom-up systems consisted of horizontal
and vertical contrast at a single scale, curvature detection using the Harris operator
(Harris and Stephens, 1988), and a foreground estimator (Stauffer and Grimson,
1999).

In addition, the model included a number of attentive, or top-down, systems that
learn to predict image regions where targets are likely to occur or relations between
different features in the image. For example, on attentive system learns associations
between target stimuli and visual cues that predict the location of target stimuli.
A number of different relations between cues and target were studied including
absolute and relative spatial and temporal relations between a single or multiple
cues and a target.



Chapter 5
Anticipatory, Goal-Directed Behavior

Martin V. Butz, Oliver Herbort, and Giovanni Pezzulo

As Man is a reasonable Being, and is continually in Pursuit of Happiness, which he hopes
to find in the Gratification of some Passion or Affection, he seldom acts or speaks or thinks
without a Purpose and Intention. He has still some Object in View; and however improper
the Means may sometimes be, which he causes for the Attainments of his End, he never
loses View of an End, nor will he so much as throw away his Thoughts or Reflections,
where he hopes not to reap any Satisfaction from them. (Hume, 1748, pg. 33-34)

David Hume may be one of the first who thought about the causes that actually en-
able us to act goal-directedly in our pursuit of happiness. Besides having usually an
end, or goal, in mind, Hume realized that the end must elicit those means that were
learned to correlate with the end. Such correlation knowledge, according to Hume
(1748), was based on three types of connecting “ideas”: resemblance, contiguity in
time and place, and cause and effect. Knowledge of correlations and cause-effect
relations alone, though, do not directly lead to effective behavior. Thus, not only the
question how we learn correlations in the environment needs to be addressed, but
also how we can exploit the obtained knowledge, if learned properly. While Hume
did mainly address the former question, the latter question was acknowledged by
Hume only in so far that the acquired knowledge may be used to pursue our goals.

Another related line of research on causation is put forward by Kant (1998).
Sloman (2006) contrasted a ‘Humean’ and a ’Kantian’ view of understanding corre-
lations and causations in particular. The former is evidence-based, probabilistic, and
statistical. The latter is structure-based and deterministic. Kant highlights the role
of concepts and necessity in contrast with the Humean emphasis on observation and
correlation. The Kantian notion of causation is more complex and requires under-
standing of spatial structures and relationships as well as the capability to reason
about what happens when they change. While humans are usually seen as explor-
ers that learn correlations in the world based on experimentation—and thus more
’Humean’ evidence-based—they rely on and inevitably detect the ’Kantian’ a priori
structures in our world given due to time, space, and physical constraints.

Just like humans, all other anticipatory systems, both biological and artificial,
need to learn and store knowledge about themselves and the world. Only this knowl-
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edge enables them to predict future events, gauge the consequences of one’s own ac-
tions, and finally interact competently and intelligently with objects or other agents.
Thus, one of the questions addressed in this chapter is how knowledge about the
world or the self may be represented.

However, regardless if we acquire knowledge based on ’Humean’ or ’Kantian’
principles, or both, just having gathered knowledge about the world does not mean
per se that our decisions will be wise and our actions will be appropriate. It is not
even clear how predictive knowledge may be turned into actual decisions in gen-
eral. The ideomotor principle, which dates back to the 19-th century (James 1890;
Herbart 1825; cf. Hoffmann et al. 2004), suggests that actions are bi-directionally
linked to the effects they usually produce. Thus, once a goal is chosen and activated,
the bi-directional links point to those actions that previously caused the goal to come
about. While this still does not clarify the actual mechanism of selecting the appro-
priate means, it implies that an inverse mechanism is necessary that stores means to
achieve current goals.

With the ideomotor principle as the basic principle of goal-directed behav-
ior in mind, this chapter analyzes related predictive and anticipatory systems that
learn predictive representations of their environment and can use those to act goal-
directedly. Predictive systems are systems that are able to predict sensory inputs or
pre-processed, more abstracted perceptual input. From an adaptive behavioral per-
spective most important are systems that learn such predictive representation. These
predictive capabilities are an important part of any goal-directed behavioral system
that is explicitly anticipatory. However, as suggested in the comparison of the in-
sights put forward by David Hume and the ideomotor principle, predictive capabili-
ties are only the first step toward an anticipatory behavioral system. Thus, the second
question that this chapter addresses refers to the structures and processes that enable
the selection of actions or decision making, based on the acquired knowledge.

We identify two fundamental classes of approaches that realize action selection
based on predictive representations of sensory-motor correlations. First, schemas
form a mental (internal) predictive world model, which encodes all kinds of prop-
erties, independent of possible tasks and goals. Although the representation might
correspond to an exhaustive internal world model, the schemas alone cannot be
used directly for decision making or action selection. Before a decision and action
is made, internal processes are required that evaluate possible means in the light
of current behavioral goals and desired states. Even more so, to be able to make
complex decisions or execute meaningful actions, many schemas may have to be
combined. Thus, schema approaches generally build a forward model that is used
inversely for action selection.

Second, inverse models—in contrast to schema approaches—encode direct con-
nections between behavioral goals and actions. Thus, they may be directly used for
action decision making without any further processing. Inverse models can be seen
as the result of abstracting or aggregating schemas because they focus on a gen-
eralized, inverted representation of properties in the world. In this sense, they can
also be considered a world model, which is however rather limited compared to the
world models realized in schema approaches.
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Accordingly, this chapter first gives an overview of several kinds of schema ap-
proaches and inverse modeling approaches. We classify each system from an antic-
ipatory behavior perspective discussing how knowledge is represented and which
processes are necessary to turn anticipatory knowledge into behavior. As we cannot
review all architectures that have been proposed to date, we exemplify each class of
anticipatory behavioral systems with a representative model. Examples are chosen
to provide details of state-of-the-art models of goal-directed behavior and to cover
a broad range of approaches, including symbolic, subsymbolic, and neural models
as well as supervised, unsupervised, and reinforcement learning approaches.

In the next section, we first give a brief history of schemas and provide a defini-
tion. We then distinguish different schema system classes and give system examples.
Similarly, we discuss inverse model approaches, combinations of both approaches
and other advanced techniques. In the second part of the chapter, we assess weak-
nesses and strengths of the architectures in learning and representing predictions
and in using those predictions for the generation of anticipatory cognitive functions.
Finally, we contrast the systems’ capabilities and give an outlook on potential future
macroscopic organizational structures for anticipatory systems, especially highlight-
ing hierarchical and modular structures.

5.1 A Brief History of Schemas

Originally, psychology and cognitive sciences suggested that knowledge about our
world is represented by schemas. Drescher (1991) concisely defined a schema as a
representation of a triple that links a situation or condition, an action, which may be
carried out in this situation, and subsequent effects. How the knowledge is turned
into actual behavioral decision making and control remains unspecified. However,
any schema representation may be considered as a structure that represents sensory-
motor correlations, that is, how motor activity usually affects the perceived environ-
ment.

Historically, the term ‘schema’ may have been firstly introduced by Bartlett
(1932) referring to a map or structure of knowledge stored in long-term memory.
Successively, Piaget (1954) described schemas in a more operational sense, roughly
as mental representations of some physical or mental action that can be performed
on an object or event. He considered schemas the building blocks of thinking and
as the basic structure underlying behavior and cognition (in a process that he de-
scribed as ‘assimilation and accommodation’). Schmidt (1975) proposed complex
schema structures, which encode generalized motor programs for a variety of tasks
and internal models of the sensory inputs that accompany movement execution.

Also many approaches in the field of artificial intelligence are based on the
schema notion, including frames (Minsky, 1988), scripts (Schank and Abelson,
1977), schemas (Arbib, 1992, 1989; Drescher, 1991; Neisser, 1976; Norman and
Shallice, 1986; Pezzulo and Calvi, 2007b; Shapiro and Schmidt, 1982), anticipa-
tory classifiers (Butz, 2002a; Butz and Hoffmann, 2002; Gérard and Sigaud, 2001;
Gérard et al., 2005; Stolzmann, 1998), neural schemas (Mccauley, 2002), semi-
otic schemas (Roy, 2005), and behaviors (Brooks, 1991; Maes, 1990). Architec-
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tures including distributed and competitive functional units are often referred to
as ‘behavior-based’ or ‘schema-based’. Several integrated frameworks have been
proposed for designing them; among the most popular ones we can mention the
behavior-based approach proposed in Arkin (1998), the NSL/ASL in Weitzenfeld
et al. (2000), and the Robot Schema (RS)—a formal language for designing robot
controllers proposed in Lyons and Arbib (1989), which includes perceptual and mo-
tor schemas. Drescher (1991) was one of the first who implemented a functional
schema-based approach showing simple goal-directed behavioral capabilities.

Schema theories are strongly motivated by biological and ethological models—
some of the first implementations intended to replicate the behavior of the cock-
roach or the praying mantis in robots (Arkin et al., 2000). In general, a schema links
conditions, actions, and result components, which are sometimes also called (sub-)
schemas. This enables the control system to execute those actions whose conditions
are currently satisfied (that is, schemas that apply) and whose result components
appear currently desirable. Often, schema theories stress the importance of proce-
dural knowledge, that is, a schema constitutes the long term memory of perceptual
or motor skills, or the structure coordinating such skills. Schemas are especially
well-suited for parallel and distributed systems, since they can be seen as concur-
rent computing units.

While several researchers have described the usage of schemas in the perspec-
tive of reactive and behavior-based robotics (Arkin, 1998; Brooks, 1991), schemas
embed a predictive component that is used for action selection. Moreover, percep-
tual schemas are often shaped for motor actions. That is, schema representations
are usually essential for motor actions. Thus, although not necessarily explicitly an-
ticipatory, schemas serve for the control of behavior with a predictive component.
Which schema representations exists and how these representations may be turned
into behavior is discussed in the following section on the basis of various system
examples.

5.2 Schema Approaches

Schemas integrate situations, actions, and their effects, mostly independent of up-
coming tasks, potential goals, or any constraints. However, as these schemas are not
related or specific to a certain task or goal, they cannot be directly used for deci-
sion making or action selection. For example, consider a schema that specifies that
when holding a cup (condition) and drinking out of it (action), thirst will decline
(effect) and another schema that specifies that when in a kitchen and grasping a cup,
the cup will be held by the hand. Now, given the goal of wanting to quench one’s
thirst, and given further the fact of being currently in the kitchen, then both schemas
my be integrated suggesting that when grasping the cup and then drinking from it
may quench the thirst. However, note that there is no schema that directly specifies
what to do given the goal of quenching thirst, rather, little pieces of schema-based
information need to be integrated into a more complex decision or action.

In the following sections we review several classes of schema approaches that
differ in both, the form of the knowledge representation and the processing of the
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knowledge. We begin with a review of symbolic knowledge representations, from
which actions may be derived by comparing expected results, planning, or the gener-
ation of a behavioral policy. Then, neural network approaches are discussed, which
ground schemas on simple perceptions and derive actions from planning processes
or the preparation of a controller by dynamic programming.

5.2.1 Symbolic Schemas for Policy Learning

An approach for using world model representations to improve policy learning
and effectively generating an action policy is the tabular DYNA-PI model (Sutton,
1990), which may be considered as one of the simplest schema-based approaches.
As in all reinforcement learning approaches, the core is an actor-critic architecture
(Sutton and Barto, 1998). The critic implements an “evaluation function” and the
actor an “action policy”. The evaluation function assigns a reward or reinforcement
value to each possible state-action pair. The action policy determines which action
to take in a specific state. In addition to this actor-critic model, DYNA-PI learns a
predictive world model. This model is composed of two functions, a state transition
function and a reward function (both functions may be stochastic). Both functions
are learned by initially random interactions with the environment. The world model
is used to predict the consequences of actions, in terms of reward and future states of
the world. The action policy, due to a reward-backpropagation mechanism, realizes
the inversion process. Behavior is triggered, by choosing that action that is expected
to yield the highest reward in the long run, which is effectively a form of payoff
anticipation.

The key idea of the DYNA-PI model is that an agent endowed with a world model
can produce “simulated experiences”, besides the experiences gathered during ac-
tual environment interactions. Thus, the evaluator and actor can be further trained
on simulated experiences. If the learned world model is accurate enough, this “men-
tal training” will speed-up the improvement of behavioral performance in the real
world. Thus, besides payoff anticipations, DYNA-PI uses internal simulations of
anticipated events to improve its behavior—a form of state anticipation.

Reinforcement learning approaches were recently also carried-over to logic-
based representations, in which case they are often referred to as relational rein-
forcement learning. Kersting et al. (2004) applied reinforcement learning ideas to
a logic-based, relational world model framework. Using reward propagation tech-
niques and a matcher mechanism, desired goal states were activated and propa-
gated through the logic-based relational world model. The first-order logic-based
abstractions in the world model showed to improve behavior and planning capa-
bilities significantly, also enabling generalizations to similar contexts dependent on
the relational logic-based representation available. Thus, besides tabular representa-
tions, generalized relational schema-like representations can be applied effectively
combining world model representations with policy learning. Another challenge,
however, is to learn a suitable generalized schema representation from experience
alone, which is addressed in the subsequent sections.
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5.2.2 Symbolic Schemas and Prediction for Selection

A prominent example of an online generalizing world model learner are Anticipa-
tory Learning Classifier Systems (ALCSs, Stolzmann, 1998). These learning sys-
tems are inspired by the psychological principle of anticipatory behavior control
(Hoffmann, 1993; Hoffmann et al., 2004), as well as by the schema approach of
Drescher (1991) and DYNA-PI. ALCSs learn a generalized predictive model of an
environment online. Predictive knowledge is stored in condition-action-effect rules,
called classifiers, that represent a schema-based world model. The ACS2 system
(Butz, 2002a) combines heuristic search with genetic mechanisms to generalize the
predictive world model online.

As DYNA-PI, ACS (Stolzmann, 1998) originally included reward values directly
in the schema representations. Given a generalized schema representation, however,
reward aliasing can occur in which case the schemas may be sufficiently accurate
to predict action effects but may be over-general to represent an optimal behavioral
policy (Butz, 2002a). Consequently, XACS (Butz and Goldberg, 2003) was devel-
oped, which separates state value and schema learning. XACS is a combination of
ACS2’s model learning capabilities with the evolutionary online generalizing RL
mechanism XCS (Wilson, 1995). The system learns online a generalized state value
function, which is represented by a set of condition-value tuples, using XCS-based
techniques. Moreover it learns a generalized world model according to the model
learning techniques of ACS2. In reinforcement learning terms, XACS learns gener-
alized representations of the state transition function of a Markov decision process
(MDP) as well as of the underlying value function.

As opposed to selecting an action based on the best applicable schema, action
selection then becomes a two-stage process in which all applicable schemas predict
possible next outcomes and the schema is chosen for execution that predicts the
maximally suitable outcome, that is, the outcome that is expected to yield the highest
value according to the learned state value evaluation function. Thus, the inversion
of the predictive capabilities takes place during action selection as well as by means
of reward back-propagation mechanisms while learning the value function. More
complex decisions or behaviors may be elicited if planning mechanisms are used to
combine many schemas.

XACS has shown to be able to robustly learn compact representations of optimal
behavioral policies. Policy learning was further sped-up by exploiting the knowl-
edge of the predictive model using the DYNA-based update techniques discussed
above (effectively speeding-up the adaptation of the value function). Thus, XACS
is a schema system that combines a schema representation with a state value repre-
sentation to learn a compactly represented optimal behavioral policy quickly, accu-
rately, and reliably.

Recent gradient-based update mechanisms in XCS (Butz, 2006) can improve per-
formance of XACS, so that XACS promises to serve as a robust learner in large, high
dimensional MDP problems. With respect to behavioral plausibility, it was shown
that ACS2 can be used to simulate the learning of behavioral patterns previously
observed in rats (Butz and Hoffmann, 2002). Moreover, since XACS is a system
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that learns online and from scratch, the implementation of an enhanced XACS sys-
tem is possible, which may comprise multiple, interacting reward learning modules
that may be additionally controlled by motivational and emotional constraints. For
example, dependent on the gained learning experiences, it is imaginable that the
emotional patterns of the cognitive system may evolve differently resulting in, for
example, a very “shy” or a very “bold” system.

5.2.3 Neural-Based Planning

Besides tabular and symbolic approaches, also a neural network-based schema ap-
proach (Baldassarre, 2001, 2003, 2002a,b) was implemented, which exploited the
prediction and planning capabilities of the schema-based representation. The con-
troller was tested on a simulated robot with a 1D surround camera that solves
stochastic path-finding landmark navigation tasks (the robot moves in an arena with
white walls and black pillar landmarks by selecting one of eight absolute-direction
actions in each simulation time step). Unlike the DYNA-PI architectures, the con-
troller can pursue arbitrary (novel) goals. In particular, the NN can plan with re-
spect to the achievement of any externally or internally generated goal, thanks to
the generation of internal rewards in association with them. Whereas DYNA learns
to predict rewards assumed to be permanently associated to states, the NN plan-
ner is endowed with a “reward generator”, which dynamically generates an internal
reward when the system achieves its current goal.

The controller builds an efficient “partial policy” by focusing on possible start-
goal paths and is capable of deciding to re-plan if “unexpected” states are encoun-
tered (Baldassarre, 2003). The simple “forward planner” version of the controller
iteratively plans by the generation of chains of predictions from the position cur-
rently occupied by the robot. The more sophisticated “backward-forward planner”
version of the controller iteratively generates chains of predictions from both the po-
sition currently occupied by the robot and the goal state. In both cases, the pseudo-
experience so generated is used to train the reactive components of the system as in
the DYNA systems. The forward models are composed of neural networks trained
to predict the perceptual consequence of action executions. The “backward models”
are composed of neural networks trained to “predict” the “origin state” from which
the robot might have arrived to a certain state given the execution of a certain action.

Another version of the controller implements a simple form of neural abstract
planning that enhances the exploration and evaluation updating capabilities of the
controller (Baldassarre, 2001). Abstraction is implemented in terms of planning on
the basis of macro-actions (actions composed of n actions of the same type, such as,
north-north-north) and action execution at the primitive level.

A more sophisticated modular version of the controller (Baldassarre, 2002a) al-
lows the system to store information about achieved goals and to recall such infor-
mation so as to decrease the planning burden when the same goals are assigned more
than one time. In this case, the goals are not only used to plan but also to satisfy a
“motivation” signal that allows the reactive components of the system to recall the
knowledge related to previously achieved goals.
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An earlier, similar NN planner (Schmidhuber, 1990b,a, 1991c) learned a recur-
rent NN model and could show capabilities of reinforcement learning and planning
in dynamic environments. He also investigated the capabilities of simulating curios-
ity and boredom with the architecture. Recently, parts of that NN planner were used
in some of the modules of a modular and hierarchical control architecture (Gloye
et al., 2004) that won the robot soccer world cup (FU-Fighters, Small Size, 2004).

5.2.4 Neural Network-Based Dynamic Programming

Finally, neural networks may be used to integrate schemas into highly flexible move-
ment plans by neurally implementing dynamic programming. A recent computa-
tional model of motor learning and control, SURE REACH, explains the high flex-
ibility of human motor behavior (Butz et al., 2007a). This hierarchical architecture
stores an associative model of state transitions as well as a redundant associative
mapping of hand locations with arm postures. Population-encoded spatial represen-
tations enable the application of dynamic programming techniques. To move the
hand to a desired location, the hand position is first translated into a representation
of the redundant postures that coincide with the target hand position. This redundant
intrinsically encoded goal representations and the encoded state transition model is
then used to generate a movement plan by neurally implemented dynamic program-
ming.

Without additional constraints, the minimum path in posture space is executed.
However, if the task imposes additional constraints, alternative action sequences
may be generated by simple neural inhibitions. Thus, SURE REACH is able to
reach hand targets while incorporating task-specific constraints, for example, adher-
ing to kinematic constraints, anticipating the demands of subsequent movements,
avoiding obstacles, or reducing the motion of impaired joints (Butz et al., 2007a;
Herbort and Butz, 2007). The approach is generally similar to early self-supervised
control approaches (Kuperstein, 1988; Mel, 1991), but extends them to the sensori-
motor control of redundant bodies. Compared to previous neural network models of
motor learning and control, SURE REACH accounts for higher behavioral flexibil-
ity and adaptivity without the need for relearning.

5.3 Inverse Model Approaches

Schema approaches may be used to represent a model of the world in a very frag-
mented way and they require complex processes to turn a goal into an action. A
different approach of modeling goal-directed behavior and the function of executive
modules is put forward by the notion of the inverse model (Kawato, 1999). An in-
verse model is an internal representation that inverts the flow from action to effect. It
thus generates actions that are useful to reach a desired state. To follow the example
mentioned above, an inverse model might specify that thirst may be quenched by
drinking from a cup held in the hand and that when in the kitchen without a cup, a
cup should be grasped. Note that in this example, the model directly specifies which



5 Anticipatory, Goal-Directed Behavior 93

action to execute given start and goal. The model does not specify the actual con-
sequences of actions, though. Rather, it merely suggests that the action in the given
circumstances is usually advantageous for achieving the specified goal.

Thus, the inverse model approach is fundamentally different from the schema
approach. Whereas in the schema approach, the fragments of information stored in
the schema have to be processed to arrive at a decision or to generate an action, an
inverse model aggregates such a process in a direct mapping from situations and
goals to actions. An inverse model may thus be seen as the result of an aggregation
of many executed schema processes that are combined and generalized into a simple
mapping. A drawback of inverse model approaches is that the acquired mapping is
highly inflexible because it generates a rigid mapping from goals to actions. Thus, if
the environment changes or novel tasks have to be solved, alternative behaviors may
be required to maintain effective behavior. Inverse models cannot provide alterna-
tives so that expensive relearning would be necessary without schema knowledge.
Of course, a direct mapping has the advantage that no potentially costly planning
or other preparatory processes are necessary to determine actions. Thus, while in-
verse models appear well-suited for rigid, quick, automatized control, inverse mod-
els alone are rather inflexible and essentially may hinder the quick adaptation to
novel situations or tasks.

5.3.1 Inverse Models in Motor Learning and Control

In computational neuroscience, inverse model approaches are implemented in feed-
back error learning (FEL) models of cerebral motor learning (Berthier et al., 1992,
1993; Barto et al., 1999; Haruno et al., 2001; Karniel and Inbar, 1997; Kawato et al.,
1987; Kawato and Gomi, 1992; Schweighofer et al., 1998b,a; Wolpert and Kawato,
1998) In short, these model predicate that the cerebellum is an inverse model for
goal-directed motor behavior. The cerebellum exerts control of goal-directed move-
ments and adjusts its output according to an assumed cerebral linear feedback con-
troller. During learning, the cerebellum thus learns a direct mapping from goals to
motor outputs.

While FEL models rely on the accurate control of a simple controller, other in-
verse model paradigms learn their inverse models simply by the observation of ran-
domly sampled actions or physical plant correlations. The most prominent class in
these approaches are direct inverse modeling (DIM, Baraduc et al., 1999, 2001;
Bullock et al., 1993; Kuperstein, 1988, 1991; Ognibene et al., 2006) and the related
resolved motion rate control (RMRC) approaches (D’Souza et al., 2001; Jordan
and Rumelhart, 1992; Whitney, 1969). Both techniques learn a situation-dependent
mapping between goals and motor commands. For example, a non-redundant arm
may learn its inverse kinematics by mapping a hand position goal to a correspond-
ing arm posture, which may trigger suitable motor activity. RMRC is more robust
in the face of redundant plants, storing that action for a particular goal and situation
combination that was optimal during learning.

Redundant bodies or environments generally pose a problem to inverse model-
ing approaches, because one of many equivalent actions has to be associated with



94 M.V. Butz, O. Herbort, and G. Pezzulo

each particular goal. Thus, among all potential actions, those are stored in the in-
verse model that optimize additional criteria. These optimality criteria have to be
defined to enable the acquisition of an inverse model (D’Souza et al., 2001; En-
gelbrecht, 2001; Todorov, 2004). An inverse model is thus only suited to optimize
a single criterion, which was defined before learning. Changes in the criterion, for
example, due to demands of novel tasks or changes in the environment, reduce the
performance of an inverse model or may even render it completely incapable. In
contrast, only the ability to adapt optimality criteria quickly from one movement to
the next enables the flexibility of human behavior (Rosenbaum et al., 1995). Ad-
ditionally, the need to adapt an inverse model to an optimality criterion seems to
hinder unsupervised sensorimotor learning (Herbort and Butz, 2007). Thus, due to
its inflexibility and limited learning capability, the inverse-model view of motor con-
trol has recently been challenged with the proposition of the SURE REACH model
(Butz et al., 2007a).

5.3.2 Inverse Models and Schema Approaches

Despite the principled difference that schema approaches store a general model of
the world and inverse models encode preprocessed, task-specific goal-action links,
both approaches are certainly strongly related.

First, inverse models and schema approaches may happen to represent identical
sets of information, if a one-to-one mapping between goals and actions exists (of
course, dependent on the situation). In such a context, each goal can only be pur-
sued by a single action and executing this action is sufficient to reach that goal.
Thus, inverse models and schema models inevitably represent the same informa-
tion given that both models always yield the same action to execute. However, the
general equivalence may only exist in rather abstract, artificial models, seeing that
environments are usually continuously in flux.

Second, some schema approaches first prepare a behavioral policy, dependent
on the goal and potential constraints, and then execute behavior accordingly (e.g.,
SURE REACH). The resulting policy can be considered an ad-hoc inverse model,
which has been generated solely and exclusively for the current goal and situational
demands. In this sense, these approaches combine the advantages of inverse models
with the flexibility of schema approaches.

Thus, it seems most plausible that efficient anticipatory behavioral control can
only be accomplished with both representations present—schema approaches to
know the environment and also to verify current action successes and inverse model
approaches to effectively and progressively automatically control behavior.

5.4 Advanced Structures

The previous section has described a broad variety of approaches, which imple-
ment executive models and enable goal-directed behavior. In the following, we out-
line how the described approaches may be integrated and combined with predictive
models to enhance performance and address more complex tasks.
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It is evident from many lines of research in psychology, neuroscience, computer
science, and engineering that efficient behavior is not only based on the quality of
schemas or inverse models, but also on the quality of sensory data or the quality of
the output processing. For example, sensory ambiguity may be reduce by integrating
multiple sources of information or by predictive top-down connections. Likewise,
motor control may be facilitated by being able to identify basic characteristics of
plants or by dividing the generation of motor actions from high-level goals into
computationally simpler sub-processes.

In this section, we want to highlight structures, in which schema approaches or
inverse models may be combined or embedded to optimize behavioral control. First,
we show that the combination of executive modules and predictive mechanisms can
enhance behavioral performance. Second, predictive models and executive mod-
ules may be coupled to form higher order schemas, enabling effective behavior in
varying contexts. Finally, hierarchical control structures may stabilize behavior and
enable the solution of more complex types of problems.

5.4.1 Prediction and Action

The discussed inverse model approaches are capable of generating actions or be-
haviors to pursue certain goals. In this section, we discuss how these architectures
may be integrated with predictive models, that is, forward models of schema ap-
proaches, to enhance control. Forward models enable the anticipation of changes
of the environment or effects of one’s own actions. In this section, we first intro-
duce long short-term memory (LSTM) recurrent neural networks, which allow the
prediction of a series of future events. Then, we give examples in which forward
models provide internal feedback to stabilize and enhance control.

5.4.1.1 Recurrent Neural Network Approaches

Recurrent neural networks (RNNs) were proposed in Elman (1990) mainly as a
language and grammar processing system. However, recent advances have applied
RNNs to a variety of problems including time series analysis, speech processing,
or robot navigation tasks. RNNs seem to have particularly strong potential for the
formation of predictive and anticipatory structures. A good overview of a variety
of RNNs can be found in Zappacosta et al. (2007). In the following, we focus on
the LSTM system, which solves particularly hard grammatical problems as well as
challenging time series analyses problems 1.

LSTM models are artificial RNN architectures that are endowed with neural gate-
based structures (Hochreiter and Schmidhuber, 1997). Input gates and output gates
guard input/output access to the internal states of neurons, enabling the algorithm
to maintain memory over theoretically infinitely long periods of time. The networks
effectively deal with the problem of vanishing gradients, which is usually a major

1 Some of the other neural network approaches discussed below as well as the NN approaches
discussed in relation to schema-based approaches also contain some form of recurrence but are
usually not explicitly termed “recurrent” NNs.
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limitation in other RNN structures especially in problems in which long-term de-
pendencies need to be remembered. LSTM can remember and relate events distant
in time. It is thus expected to be most suitable as a prediction tool for anticipatory
systems that need to detect long-term dependencies (in memory) or that have to deal
with partially observable MDPs (POMDPs).

LSTM RNNs use “memory units” that use the “constant error carousel” (CEC)
to propagate error, theoretically, infinitely back in time. The memory units are pro-
tected by an input gate and an output gate that multiply incoming activation and
outgoing activation to effectively “gate” the memory information so that it can
apply only when necessary. In later papers, a “forget-unit” was added that makes
the timing of the memory unit more precise and allows learning from continuous
data streams (Gers et al., 2000). Kalman-filter enhanced learning (Pérez-Ortiz et al.,
2003) increases learning speed by orders of magnitude but also increases the learn-
ing complexity of the system.

While LSTM RNNs thus showed to be highly useful in predicting challenging
context-free grammars as well as real-valued data streams, it remains to be shown
how the learned structures may be inverted to trigger effective online action selec-
tion and motor control.

5.4.1.2 Internal Feedback

After given an example of a predictive model, we now explain how such models
may be used to improve behavior. In order to efficiently select effective actions, it is
essential to know the current state of the world as exactly as possible. However, bi-
ological and artificial sensor systems are prone to noise, and information about the
environment may only reach the executive modules through time-consuming pro-
cessing pathways. In this case, a predictive model may compensate for these effects.
For example, if sensor data is noisy or ambiguous, a prediction of the current state
of the environment based on recent perceptions and recently executed actions may
enable the formation of a concise representation of the environment. Thus, forward
models may help to implement Kalman filtering approaches. Likewise, decisions
or actions may be adjusted according to their expected impact on the world before
feedback from the environment is available or even before the action is executed.

A processing control model, partially based on internal feedback, was proposed
by Kawato et al. (1987), who applied it to arm movements. In the model, control is
initially exerted by a linear feedback controller. The controller is not very efficient,
though, because the delayed feedback results in a slow control process. A forward
model is gradually learned and improves the control process by providing internal
feedback, thus enabling a much faster control process. Finally, an inverse model
replaces the linear controller to enable maximally effective movements.

In this setup, the forward model provides almost instant feedback about the ex-
pected consequences of the generated motor command. Thus, the motor system does
not have to wait for external feedback to adjust its output but can adjust motor com-
mands on their expected effects. As a result, the motor commands are much more
accurate and movement dexterity increases. Later on, internal feedback can still
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level out small inaccuracies of the inverse model and compensate for forward model
estimation errors.

Several recent studies have suggested that forward models, as body emulators,
are essential for efficient body control (Kawato, 1999; Wolpert et al., 2001). More-
over, various studies suggest that internal forward model feedback is used to esti-
mate spatial body location (Wolpert et al., 1995) as well as to improve behavioral
control of fast reaching movement (Desmurget and Grafton, 2000) or of pole bal-
ancing (Mehta and Schaal, 2002). Grush (2004) relates such representation also to
higher level cognitive processes. Thus, internal, anticipated sensory feedback ap-
pears to play an important role in behavioral control, state estimation, as well as
higher cognition.

5.4.2 Coupled Forward-Inverse Models

In the review of schema approaches, the condition part of a schema mostly referred
to a specific sensory state or situation, whereas the action part referred to a single
action entity. However, it is also possible to form schemas from more complex no-
tions of perception and action. Forward-inverse models directly couple forward and
inverse model information essentially representing context in current forward model
accuracy.

Adaptive agents should be able to operate in different contexts or environments
and should quickly adjust to changes. Thus, it has been proposed that multiple exec-
utive modules, schema approaches or inverse models, may be represented for differ-
ent contexts. However, this requires the quick identification of contexts to enable the
selection of appropriate modules. Predictive models may play a key role to identify
contexts and participate in the selection of the right executive module for the right
task.

Several researchers have proposed such decentralized architectural schemes for
the control of action that are based on coupling forward and inverse models, both,
in a localized (Demiris and Khadhouri, 2005; Pezzulo and Calvi, 2006a; Tani and
Nolfi, 1999; Wolpert and Kawato, 1998) and in a distributed fashion (Tani, 2003;
Tani et al., 2004). The former approaches are based on the mixture of experts archi-
tecture (Jacobs et al., 1991) while the latter are based on the self-organization of the
representational space in RNNs.

In these approaches, forward models are coupled to executive modules (that is,
some form of inverse model), representing a higher level schema. Such a schema
is applicable if the predictive model makes continuously accurate predictions. The
condition part of a schema is a forward model, which enables the identification of
the underlying properties of a situation, for example, how objects or bodies react
to certain actions. These underlying properties may not be evident from regarding
a single instance of the perceptual input. Likewise, the action part of a high level
schema might not be a single motor command but an entire controller, which is
especially suited to exert control in a specific context. Thus, the accuracy of the
predictive model indicates the suitability of the executive module in each schema.
As predictive model and executive module of a schema are trained exclusively in
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parallel and in an assigned context, the predictive model will only be able to make
valid predictions in the context, for which also the executive module was trained.

These architectural schemes have been used for multiple purposes. For example,
they were used to select actions appropriate to the context (Wolpert and Kawato,
1998), they were used for action observation and execution (Demiris and Khadhouri,
2005), and they were combined with a motivational system in which active drives
influence action selection (Pezzulo and Calvi, 2006a) . When behaviors can be com-
bined linearly, the models can also generalize behaviors. Algorithms for learning
and combining contexts in non-linear dynamics have also been proposed (Vijayaku-
mar et al., 2005).

This integration of predictive models and executive modules into a schema may
help stabilize the selection of control strategies, even in noisy contexts. Further-
more, it is possible to deduce abstract properties of a situation, which may not be
directly concluded from sensory input. A drawback can be that the difficulty be-
tween learning the inverse model and the forward model may differ significantly,
so that the current accuracy of the forward model may not necessarily reflect the
current suitability of the coupled inverse model.

5.4.3 Hierarchical Anticipatory Systems

Each of the so-far presented approaches is limited to comparatively small problem
domain, such as the control of simple movements, planning a chain of actions, maze
navigation, or the prediction of events of a certain kind. Whereas each approach may
be well suited to solve the problems in its domain, it cannot be easily extended to
the high variety of tasks that humans or autonomous artificial systems face, ranging
from the need to determine long-term goals to the accurate control of basic actua-
tors. This limitations can be overcome by integrating the described approaches into
a hierarchical framework. Many neurological and psychological studies and models
suggest that effective cognition and consequent behavior is based on hierarchically
structured systems, for example, accounting for complex sensory processing, cogni-
tion, and behavior (Giese and Poggio, 2003; Koechlin and Summerfield, 2007; Loeb
et al., 1999; Poggio and Bizzi, 2004; Powers, 1973; Riesenhuber and Poggio, 1999;
Todorov, 2004; Wolpert et al., 2003).

By structuring a cognitive architecture, separate problems in tasks like sensory
processing or motor control may be solved by different modules. For example, it
was demonstrated that the spinal circuity is able to counteract some perturbations
on its own, thus making motor control easier for the central nervous system (Loeb
et al., 1999). Accordingly, the CNS provides a basic control strategy, for example,
by setting reflex gains or muscle stiffness. This enables the CNS to flexibly adjust
motor control to varying tasks without the necessity to react to small perturbation,
whose compensation is left to the spinal system, which is well suited for this task
due to its fast feedback control loops. Models of central motor control suggest that
the cerebellum replaces and further optimizes cortical motor networks in the con-
trol of frequent, well-trained movements (Berthier et al., 1993; Barto et al., 1999;
Kawato et al., 1987; Kawato and Gomi, 1992; Schweighofer et al., 1998b,a). Fur-
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thermore, also movement specifications may be based on incorporating movement
selection biases on multiple levels (Cisek, 2006; Herbort et al., 2007). Also, current
hierarchical models of vision (Riesenhuber and Poggio, 1999; Giese and Poggio,
2003) were suggested to be extended to motor control problems Poggio and Bizzi
(2004).

In conclusion, hierarchical, modular systems can address specific computations
in specific modules, consequently reducing the complexity of each computation and
enhancing stability due to the partial autonomy of each module. However, in most
approaches information flows in a single direction, for example, from visual sen-
sors to abstract representations or from behavioral goals to movements. Systems in
which layers bidirectionally influence each other seem to be more promising for
the understanding of complex perception, cognition, and behavior (Hinton et al.,
1995; Hinton, 2007; Rao and Ballard, 1997). Higher layers may try to model the
behavior of the lower layers, correcting lower layer states when the lower layers do
not have the knowledge of predicting their own state. In other words, higher layers
may correct the state of lower layers by, for example, resolving ambiguity. Uncer-
tainty measures of each module’s state and also attentional influence may further
modify the influence layers have on each other. In sum, combinations and integra-
tions of effective sensory processing and motor control modules promise to yield
highly flexible adaptive decision making and control structures that go far beyond
the competency of a flat architecture.

In the following section, we now first evaluate the predictive and anticipatory ca-
pabilities of each considered system and then discuss correlations and contrast the
distinct features of each system. In particular, we first list predictive and anticipa-
tory capability criteria. Next, we discuss the various schema approaches and inverse
model approaches with respect to these criteria. The subsequent discussion draws
the attention to the currently missing system capabilities and proposes various future
research options.

5.5 Evaluation of Predictive and Anticipatory
Capabilities

We now evaluate the predictive and anticipatory capabilities of the introduced ap-
proaches on the basis of the taxonomies of predictive and anticipatory capabilities
introduced in Chapter 2. To do so, we consider the capabilities of each system in-
dividually and finally discuss their correlations and differences as well as potential
complementarities.
More concretely, we distinguish and discuss the following predictive qualities:

• Symbolic vs. real valued predictions: Does the system form symbolic, real-
valued, or both types of predictions?

• Discrete vs. continuous predictions: Does the system form predictions about a
discrete next time step or can it form continuous predictions over time?

• Noise robustness: Are learning and representation of predictions noise robust?
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• Sensory vs. payoff predictions: Does the system form sensory predictions or pay-
off predictions?

• Single vs. multiple predictions in representation spaces: Does the system form
one single prediction or multiple predictions (e.g. concrete and abstract)?

• Full vs. partial predictions: Does the system attempt to predict complete future
states or is it able to focus on sub-states?

• Exact vs. fuzzy, distributed predictions: Does the system form on exact predictive
representation or does it also estimate the confidence of its predictions?

• Immediate vs. long term predictions: Does the system predict only next states or
is it able to form immediate long-term predictions (without chaining immediate
predictions)?

• Generalization capabilities in predictions: Is the system able to generalize its
predictions to similar states in the environment?

• Single vs. multiple sources of information: Does the system distinguish between
multiple sources of information such as sensory, context, and motor activity in-
formation?

• Markov-dependent vs. independent predictions (MDP vs. POMDP): Does the
system rely on full observability to be able to reliably learn accurate predictions?

• Distinction between self and other: Does the system distinguish between predic-
tive representations about own future states and other future states?

With respect to anticipatory capabilities, we distinguish the following qualities:

• Direct vs. indirect inversion: Are goals directly (inversely) mapped to actions, or
is the mapping done indirectly?

• Reward vs. plan-based inversion: Is the inversion accomplished by means of
back-propagated payoff representations or by means of explicit representations
of future states?

• Planning capabilities: Is the system able to plan?
• Full vs. partial planning: Can the system also generate partial, abstract plans?
• Online vs. offline representations: Is the system bounded to generate future rep-

resentations based on the current state or can is also generate anticipated repre-
sentations offline?

• Flexible goal-oriented behavior: Can the system flexibly pursue novel goals?
• Adjust to new task constraints: Can the system immediately adjust behavior to

novel task constraints?
• Curious behavior: Can the system act curiously, directedly exploring novel terri-

tory or environmental properties?
• Epistemic actions: Can the system act pro-actively in order to search for missing

information?
• Surprise mechanisms: Can the system implement surprise mechanisms upon un-

expected perceptions?
• Motivational goals: Can goals be chosen or pursued based on the system’s cur-

rent motivations?

With these distinctions of predictive and anticipatory system capabilities in mind,
we now evaluate the considered systems.
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5.5.1 Schema-Based Systems

5.5.1.1 Predictive Capabilities

Schema-based systems exist for symbolic and for real-valued representations as well
as for discrete and continuous predictive representations. Generally, schema systems
focus on sensory predictions and, dependent on the schema representation, this pre-
diction can comprise multiple predictions in space as well as in time. Also, partial
predictions are generally possible and the predictions often contain confidence esti-
mates and thus represent fuzzy predictions. A tenet of schema approaches is that
condition structures try to focus on those sources of information that are maxi-
mally suitable to generate representations of future states. Thus, schema systems
are able to generalize, dependent on the representation and learning mechanisms
employed. Multiple sources of information are usually considered—albeit not nec-
essarily processed by different modules. Except for successful applications in deter-
ministic POMDP problems (Holmes and Isbell, 2005; Landau et al., 2003; Métivier
and Lattaud, 2003; Stolzmann, 2000), the successful development of internal states
for the solution of stochastic POMDP problems still remains an open challenge.
Finally, schema representations may also be projected, or mirrored, onto other en-
tities in the environment, representing their sensory-motor correlations and internal
states. To the best of our knowledge, currently no system exists that accomplishes
such a task autonomously.

DYNA-PI More concretely, the tabular DYNA-PI model may be considered the
most restricted system amongst the considered schema-based systems. It is able to
work only on discrete, distinct, and symbolic state representations and generally
cannot be consider noise robust. The prediction of the next state may be a distri-
bution over states but originally was also restricted to exact next states. The origi-
nal DYNA-PI approach does not contain any generalizations, either, which clearly
poses a huge scalability problem. The table essentially grows linearly in the num-
ber of distinguishable states and actions. Provided diverse real-valued sensory input,
the number of states may be infinite, which is an obvious limitation of tabular ap-
proaches. Thus, tabular DYNA-PI is only suitable to investigate internal planning
and reinforcement propagation mechanisms rather than to actually apply the system
to real-world adaptive system control tasks. More recent schema-based approaches
tackle this limitation with various generalization mechanisms.

XACS The XACS system is a purely symbolic, discrete prediction learner. It com-
bines model and RL learning to learn sensory predictions and payoff predictions.
The sensory predictive module relies on determinism in the environment but can
ignore fluctuations of irrelevant sensors (Butz, 2002a). The reward learning part is
rather noise robust (Butz et al., 2004a, 2003a).

Besides concrete predictions, XACS also provides the certainty of its state pre-
dictions and the corresponding state value predictions. The predictions are gener-
alized in that irrelevant attributes can be ignored. The predictive model is usually
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significantly smaller than a completely specified model. Currently, the architecture
is flat without hierarchies. Irrelevant attributes are ignored and can be explicitly
identified as irrelevant for accurate predictions or as unpredictable.

Experimental evaluations have shown that the system can ignore irrelevant at-
tributes and, given irrelevant attributes, it beats learners that learn a tabular problem
representation. The predictive models are always generalized and are usually much
more compact than tabular approaches.

There are no hierarchies and predictions are currently on one time scale only.
However, predictive chains can be generated so that long-term predictions are pos-
sible in a limited sense. The generalization mechanisms in XACS focuses on the
attributes that are relevant for accurate predictions of the next sensory inputs and
the consequent reward, respectively. Thus, regularities are detected and object clus-
ters are expected to be identifiable by the mechanisms. More sophisticated actions
such as hierarchical option-type actions (Barto and Mahadevan, 2003) or motor pro-
grams have not been investigated so far. Also contextual information, except for
action codes, has not been treated separately from pure sensory inputs in any way.

Sequence learning capabilities or performance in POMDP problems were not
investigated with XACS so far. Currently, the predictive learning capabilities are
restricted to MDP problems, because no internal states are used. Since actions are
directly included in the classifier structure, discrete action codes currently need to
be used currently and encountered changes are related to one’s own actions only.

Neural Based Planning Whereas the original tabular DYNA-PI architecture is a
tabular lookup system, which operates on discrete symbolic inputs, the NN-based
architecture is a continuous predictive system, which predicts feature-like sensory
inputs or even continuous sensory changes. The NN-based architecture can be con-
sidered rather noise robust. It forms stochastic predictions. However, the forward
models of the implemented architecture currently produce deterministic predictions
of the full sensory input. It cannot ignore irrelevant or unpredictable input, nor can
it focus on the prediction of partial input. Confidence values and fuzzy predictions
may be employed by using an appropriate error functions and related weight up-
date mechanism. As in DYNA-PI and XACS, the NN-based schema architecture
represents concrete predictions in terms of sensory input and the architecture is flat
enabling only immediate predictions (but see Baldassarre 2003, for a preliminary
investigation of a NN planner whose predictions span further time steps ahead).

The NN-based system can generalize to similar events and similar sequences,
but it does not develop object-oriented representations (no clustering) nor any type
of grammar representation (no recurrence), except for potential emergent repre-
sentations in the hidden layer of the NN due to back-propagation. Thus, only the
back-propagation algorithm in the implemented NNs may be able to ignore sensory
inputs.

The system distinguishes between two sources of information, sensory inputs,
which are continuous, and action inputs, which are discrete and are used to select
expert forward models dedicated to them. If continuous actions were included, then
actions should be considered as an additional input or may be coded in a population
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code fashion. So far, there were no investigations that would include other context-
based information or that would learn about environmental dynamics that occur
independent of the system’s own actions.

As there are no internal state representations, the neural-based planner relies on
the Markov property. Moreover, the system is completely self-centered being cur-
rently unable to project one’s own predictive knowledge onto other entities in the
world.

SURE REACH Devised as a model for movement generation rather than pre-
diction, SURE REACH does not explicitly implement any predictive mechanisms.
Nevertheless, the neural networks that are used for control are also suitable to predict
future states, the developed sensorimotor model is purely associative. The kinematic
mapping may be used to predict hand locations from (predicted) postures and vice
versa. Likewise, the sensorimotor model may be used to predict the trajectory that
results from issuing a sequence of motor commands. Due to the population encoding
of these internal models, also the uncertainty of predictions may be represented.

In sum, the system can be used to form real-valued predictions on a continuous
time scale, predicting perceptions. It can be considered rather noise-robust and may
even form, albeit limited, multiple predictive representations (arm postures and hand
locations). These predictions are full but, due to the population encoding, inherently
represent fuzzy distributions of states. Besides the option to chain predictions, as in
all other schema systems, the predictions are immediate and restricted to one time
scale. As the other approaches, it also integrates action and sensory information for
prediction. SURE REACH does not address partial observability nor the challenge
to form distinct representations of self and other.

5.5.1.2 Anticipatory Capabilities

The schema-based systems have several anticipatory capabilities in common—most
obvious is the fact that all rely on indirect inversions to trigger anticipatory behavior.
That is, they need to use their predictive capabilities in some way to trigger goal-
oriented behavior. This inversion mechanism is sometimes purely reward-based,
sometimes plan-based and sometimes a combination of both. Moreover, all schema
systems have the possibility to plan, albeit usually generating full plans only. Also
the offline generation of mental representations is usually possible. Dependent on
the involved inversion mechanisms, goal-oriented behavior can be more or less flex-
ibly adjusted. Curious behavior is generally implementable, however, epistemic ac-
tions as well as surprise mechanisms require further additions. Motivational goals
may also be included in each of the systems.

DYNA-PI DYNA-PI models are able to form explicit predictions online and of-
fline. Thus, situation-dependent planning as well as offline reflections are possible
and also implemented. DYNA-PI models are generally goal-oriented anticipatory
system. However, DYNA-PI models do not have the flexibility to account for novel
goals without any significant re-planning effort. That is, DYNA-PI models usually
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learn one (or a couple of alternative) behavioral policies. If none of the policies is
currently suitable because, for example, the goal is relocated to a novel location or
multiple goals are suddenly distributed over the environment, complete re-planning
is often necessary. System behavior is not directly goal-initiated but goal-oriented,
due to the learning of a behavioral policy. Thus, it is the reward inversion that results
in the generation of goal-oriented behavior. Curious behavior has been implemented
in some DYNA-based approaches, however, epistemic actions as well as surprise
mechanisms remain to be further investigated. DYNA-PI may learn policies for sev-
eral distinct goal representations so that it may choose between the pursuance of
available goals based on the system’s current motivational state.

XACS The anticipatory capabilities of XACS are generally similar to those of
DYNA-PI with the advantage that the system is able to learn generalized policies in
partially noisy environments that contain many additional, irrelevant sensory inputs.
Moreover, XACS does not learn a pure policy representation and thus does not rely
purely on reward inversion but also incorporates a plan-based inversion. That is,
anticipated next states and their associated state values trigger action decisions. Par-
tial planning is possible, but it is dependent on the chosen representation. However,
the learned state value function cannot be changed without significant relearning
effort. As the DYNA-PI model, the XACS model lacks the anticipatory flexibility
to account for any possible goal, but it learns to adapt only to the goals, that is, the
rewards, encountered during learning.

The behavioral policy can be improved to cause curious behavior (improving
model and policy learning) as well as greedy behavioral patterns (improving and
speeding-up policy learning, Butz, 2002b). The usage of a list of currently least
accurate predictions combined in a priority list, similar to the work done by Moore
and Atkeson (1993) in their prioritized sweeping mechanism, showed to improve be-
havioral learning even further (Butz and Goldberg, 2003). As in DYNA-PI, though,
neither epistemic actions nor surprise mechanisms were further investigated so far.
Currently only one RL module was implemented but different RL modules for dif-
ferent motivations are easily interpretable and combinable in the XACS framework.
Thus, the system has strong potentials to study multiple motivational influences and
emotional integrations. For example, opportunistic behavior may be triggered by
combining current motivational utility measures with current predictions.

In sum, the XACS approach has shown that the combination of learning gener-
alized representations of both a predictive model and a state-value representation is
a highly suitable approach that yields effective anticipatory action decision making
and control. However, as in the DYNA-PI approach, without additional mechanisms
or representations, the system cannot adapt to novel task constraints or goal repre-
sentations effectively.

Neural Based Planning Since the NN planner generates reward internally in cor-
respondence to (externally or internally generated) goals by means of a specific
module, the NN planner can self-generate reward. This reward is associated with
any possible state that the system might happen to pursue as a goal. Thus, goals may
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be associated with motivations, triggering internal reward and also shaping behavior
internally. During planning, the NN planner focuses on states that lie between the
starting position and the goal, and those around them. When in planning mode, the
actor is a model of itself acting in reality. In this sense, the system actually predicts
its own choices in states potentially experienced in the future. This is similar to the
XACS model, in which predictions are generated and compared to the state-value
representations choosing that action that leads to the anticipated highest state value.

Since the NN planner does not distribute reward values, behavior may be more
flexible but requires expensive, potentially exponential online planning upon the ac-
tivation of a novel goal representation. Action decision is based on a plan-based
inversion in that hypotheses are generated looking ahead, distributing reward, and
assigning maximally effective actions to NN-based states. While the DYNA-PI sys-
tem is a very simple planning system that only predicts (potentially stochastically
distributed) concrete next states, the NN-based system plans based on predictable
state aspects. Unpredictable inputs are ignored but partial predictions are currently
not possible. Planning is quite robust in the sense that it involves all states that might
likely be visited during action execution. It takes place precisely as an offline im-
provement of the control policy in relation to the assigned goal.

Curious behavior can be included easily by directing the behavior during ex-
ploration to NN regions in which the predictions have high uncertainty. Epistemic
actions were not investigated so far and also surprise mechanisms have not been
considered in further detail. However, goals can become motivations in the multi-
goal versions of the planner so that motivational goals can be readily incorporated
and the goal-based planning mechanism can also account for novel goals flexibly,
even though this may be computationally very demanding.

With respect to action initiation, the system learns to associate goals with actions
once a planning step has been applied successfully. In this case, goals trigger actions
/ motor (control) programs, especially in the multi-goal version of the system when
same goals are assigned more than once. The planning process “compiles” goal-
related information into the reactive components of the system. Thus, relying on
schema representations, the neural-based planner actually forms a goal-dependent
inverse model mapping.

In conclusion, NN-based DYNA-PI is a typical schema-based approach that is
capable of online planning and of generating simulated experiences offline. The NN-
based approach has the advantage of implicitly generalizing, filtering noisy inputs,
and ignoring unpredictable inputs. Hierarchical implementations of the approach,
possibly in combination with recurrent structures, await future research effort.

SURE REACH The SURE REACH model transforms spatial population-encoded
goals (that is, hand locations) into intermediate, redundant population-encoded
goals (that is, a corresponding subspace of arm postures). The posture representa-
tion is then used to generate motor commands by means of dynamic programming-
based planning. Thus, also SURE REACH is an indirect inversion model that uses
its schema representations encoded in its inverse kinematics and inverse sensori-
motor model to map goals to actions. The inversion is reward-based in the sense



106 M.V. Butz, O. Herbort, and G. Pezzulo

that goal activation, which represents reward, is inversely propagated through the
population-encoded posture space. However, due to the population encoding, the
operation of this mechanism is not exponential but polynomial and thus efficiently
executable online upon goal activation. Thus, the system can yield highly flexible
goal-oriented behavior being able to approach any reachable goal in space. Addi-
tional constraints can modify internal target representations or movement prepara-
tions to adjust behavior to situational demands. For example, new task constraints—
be it disabled joints, preferred arm postures, or anticipated subsequent goals— can
flexibly modify the unfolding anticipatory behavioral control structure.

Although not further investigated so-far, curious behavior patterns may be in-
cluded as well—potentially causing movements to spatial regions that have not been
sufficiently explored or had not been reached for an extended period in time. Epis-
temic actions, however, will require the incorporation of additional mechanisms.
Also surprise mechanisms have not been further investigated, yet. Motivational
goals, however, may be easily incorporated and a first goal-selection mechanism
was coupled with the SURE REACH model, showing avoidance behavior and the
preference to reach rewarding locations in space (Herbort et al., 2007).

Thus, SURE REACH may be considered the most flexible architecture of the
schema systems considered. However, so-far SURE REACH has only been applied
to a rather restricted arm reaching tasks. Thus, the generality of the approach as well
as the scalability of the representation to higher dimensional problems needs to be
further investigated and developed (cf. Butz et al., 2007a).

5.5.2 Inverse Model Approaches

5.5.2.1 Predictive Capabilities

In the discussed inverse adaptive control approaches, the motor control capability
is the most relevant and most investigated system part. Thus, the systems’ predic-
tive capabilities are of lesser importance and an inverse model may very well be
combined with other predictive systems to yield stable online control in addition to
the effective inverse control mechanisms, as done in the discussed forward-inverse
model approaches.

Generally, DIM, RMRC, and FEL all work on continuous valued inputs and rep-
resent continuous changes. No discretization takes place. In general, also payoff
representations are not included. All systems can be considered rather noise robust
but usually have complete representations and have no mechanisms to focus on par-
tial environmental inputs only. Thus, focusing capabilities are restricted to motor
activity and goal dependence. Furthermore, inverse model approaches usually do
not rely on exact representations and thus form rather fuzzy associations. The con-
tinuous changes are usually represented on one time scale so that more abstract
concepts of change are not represented in space nor in time. Nonetheless, the goal
representation and the implicit “belief” that the associated goal will be achieved
may serve as an interesting representation of a desired future state.

All systems known to us process information in one task-context only and can-
not switch between different contexts with different optimality criteria. Finally, the
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capability of forming internal predictions is restricted to the possibility of activating
(desired) goal states, effectively predicting that an activated goal state will become
actual. Triggering goal states based on current internal states, which might depend
on current internal motivations and emotions, is another future research challenge.
Also the distinction between self and other and the potential projection of the inverse
model on observed behavioral patterns awaits future research investigations.

Anticipatory Capabilities The anticipatory capabilities focus on decision mak-
ing and action initiation. As suggested by the name itself, direct inversions from
goals to actions trigger behavior upon goal activation. Thus, the inversion is direct,
neither reward- nor plan-mediated. The consequence is that the systems also do not
have any explicit planning capabilities, and essentially also no re-planning capabili-
ties. Behavior is either successful or fails. Upon failure, further learning is required.
However, since most inverse modeling approaches are state dependent closed-loop
control mechanisms, disturbances during behavioral control can usually be compen-
sated for. In fact, all three approaches discussed learn inverse mappings from goal
representations to motor activity that are conditioned on the current sensory input,
which represents the current state of the body in the environment.

Environmental exploration may be biased dependent on the current system
knowledge, which enables curious behavior. The possibility to impose goal-directed
behavioral execution during learning may be further explored, potentially moving
from very general, inaccurate representations to progressively finer-coded, more ac-
curate control. Coupled forward-inverse models discussed above come into mind
here, where the forward model accuracy may determine motor activity during learn-
ing, and thus bias the focus of inverse model learning. Also motivational constraints
may be incorporated easily, resulting in the selection of a goal, which is then pur-
sued by means of the inverse model. Thus, motivations may trigger goals in the
reachable space, which can be approached without additional computational effort
besides the invocation of the direct inverse mapping.

In sum, inverse adaptive control approaches may be considered as the tools that
can realize anticipatory, goal-based action decision making and control. Due to their
focus on this aspect of motor control and their general lack of predictive capabili-
ties, it seems straight-forward to modularly combine inverse adaptive control sys-
tems with suitable forward predictive mechanisms, which may stabilize control in
dynamic control problems. This has been done by the discussed forward-inverse
model combinations.

5.5.2.2 Advanced Structures

The discussed advanced structures do either form only predictive representations of
sensory inputs or couple some of the discussed system modules. Thus a separate
discussion of the considered systems is not carried through.

It may be noted, however, that RNN-like mechanisms can be expected to be nec-
essary to tackle POMDP problems, since internal state representations are necessary
in this case. To combine multiple sources of information, these systems may need
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to be further modularized, which has been partially realized by the gating structure
of neurons in the LSTM system. However, partial predictions, and predictions on
multiple levels in time and space most likely require the incorporation of multiple
forward and inverse modules and the successful knowledge exchange between these
modules. Coupled forward-inverse model show one approach to successfully com-
bine direct controllers with schema-based forward models. The discussed hierarchi-
cal system approaches may be used to form hierarchical controllers and generate
predictions at multiple levels of abstraction in time and space. Moreover, additional
challenges, such as epistemic actions, may be tackled with such system combina-
tions. The current capabilities of all discussed systems are now further contrasted
from a broader perspective, identifying current system shortcomings as well as aris-
ing challenges.

5.6 Discussion

The system classifications point towards several immediate and longer term chal-
lenges. In this discussion, we contrast the different systems with respect to their
predictive and anticipatory capabilities and identify the most important challenges
lying ahead. Hereby, the combination of several systems and system capabilities ap-
pears highly promising to generate more complex, autonomously learning, highly
adaptive, flexibly behaving cognitive systems.

5.6.1 Contrasting Predictive System Capabilities

The system categorizations showed that there are a rather wide variety of predictive
learning systems, each of which also have distinct anticipatory processing poten-
tials. Although it is hard to contrast these potentials directly, Table 5.1 shows an
overview of the predictive capabilities of the discussed learning architectures. All
systems exhibit highly promising but in many cases differing predictive capabilities.
The table may serve as an indicator of the most important challenges lying ahead
for each investigated system and which aspects are the most immediate challenges
that point towards successful system enhancements and improvements.

The table suggest that there is a current lack of system competencies in several
seemingly highly relevant aspects of predictive capabilities: (1) the development of
competent predictive system that are able to learn predictions on multiple levels of
abstraction in time and space; (2) the development of systems that effectively incor-
porate context information in their predictions. These two points are discussed in
the remainder of this section. Albeit also important challenges, the problem of han-
dling environments with only partially available information (POMDP problems) as
well as the problem of the self/other distinction is not further discussed due to the
diversity of the problem and its strong dependency on representations and diversity
in the approaches to this problem.

Although several of the predictive systems have the potential to predict multiple
aspects and provide accuracy or confidence estimates of their predictions, it seems
to be difficult to provide multiple predictions in parallel, such as the prediction of
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Table 5.1 The contrasted predictive capabilities of the considered systems suggest further ad-
vancements as well as potential system combinations.

Aspect DYNA-PI XACS NN-b.D SURE REACH Inverse Mod.
Form Symbolic Symbolic Real-Valued Real-Valued Real-Valued
TimeScale Discrete Discrete Continuous Continuous Continuous
Noise Robust No Partially Yes Yes Yes
Payoff/Sensory Both Both Sensory Sensory Sensory
Multiple Space Single Single Single Single Single
Full/Partial Full Partial Partial Full Full
Det./Fuzzy Deterministic Partially Fuzzy Potentially Fuzzy Fuzzy Potentially Fuzzy
Time: Imm./Longer Term Immediate Immediate Immediate Immediate Immediate
Generalization No Yes Yes Yes Yes
Info. Sources Two Two Two Two Two
(PO)MDP MDP MDP MDP MDP MDP
Self/Other Self Self Self Self Self

next sensory input, plus the prediction of the position of an object in the input, or
the prediction of other, often pre-processed environmental features. The hierarchical
networks starting from Rao and Ballard (1997) might be an approach to realize
such multiple abstract capabilities. The hierarchically combined layers, structured
appropriately, may each have a different (emerging) type of abstract representation
and thus also abstract predictions. It seems that the integration of other mechanisms,
such as the clustering-for-prediction capabilities of the XACS system or the long-
term dependency detection capability of the LSTM system, into these hierarchical
network structures points towards a highly challenging but also highly rewarding
future research direction.

Related but not identical to the capability of predicting at multiple levels of ab-
stract representations lies the capability of predicting at multiple time scales. Again,
hierarchical networks seem to have the most potential in this respect. However, even
more important than representational abstraction is the question of how to abstract
in time. To generate flexible longer time-bridging capabilities during learning, it
needs to be clarified when predictive responsibility should be delegated to the next
higher level. Early work in this direction suggests that learning at a higher level
should be activated if the current level is well-predicting on average but currently
encounters highly ill-predicted input (Schmidhuber, 1992a,b). Interestingly, it was
recently shown that a very similar principle can serve for the effective detection and
generation of options, that is, higher level motor programs, in reinforcement learn-
ing (Butz et al., 2004b; Simsek and Barto, 2004). In general, the information content
received from the sensory inputs must be significantly higher and persistently high
in order to delegate predictive responsibility to the higher prediction layer. Further
research in this respect seems very important.

Another approach for multiple levels of abstraction in time is the consideration
of delay in sensory feedback. Hierarchical control structures partially take these
feedback constraints into account, such as the work of Kawato et al. (1987), in which
a lowest-level PD controller serves as backup in case the higher level inverse model-
based controllers and forward models are incorrect or inaccurate. The combination
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of these principles with more competent network structures, points towards another
big future research challenge.

The incorporation of multiple sources of information for prediction, apart from
the distinction of sensory inputs and action input, is also only partially realized in
most of the predictive systems. Hereby, it can be expected that context informa-
tion should not be simply included as an additional lower level input, but rather
should be exploited as a different type of input that serves as a focusing and predis-
position mechanism in the system. Thus, in the rule-based XACS system, context
may pre-select currently relevant rules, or, in the LSTM system, context informa-
tion may be used to open and close certain input, forget, and output gates in order
to stream information flow in a context-dependent way. The usage of context infor-
mation from Balkenius’ context dependent attention-processing and reinforcement
learning systems (cf. Chapter 4) may serve as an inspiration of how to incorporate
such mechanisms in a more flexible way into predictive learning systems.

Besides these possible advances, it should be kept in mind that predictive system
capabilities are only useful if they serve a purpose, that is, if they affect motor con-
trol favorably. To generate competent anticipatory cognitive systems, predictions
need to be learned in order to improve learning and behavior. Thus, the general
challenge is to develop more competent anticipatory decision making and control
systems and possibly also bias the learning of predictions on the resulting anticipa-
tory behavior capabilities. To achieve this endeavor, it will be necessary to combine
several predictive systems and couple predictive and inverse systems for the problem
structures at hand. Moreover, it will be necessary to exploit their respective compe-
tencies modularly to generate more effective anticipatory processing mechanisms.
How this might be achieved is outlined in the following section.

5.6.2 Contrasting Anticipatory System Capabilities

Before contrasting the systems’ anticipatory behavioral capabilities, we want to
point out that the model learning components themselves are not as much influ-
enced by their own predictive capabilities as might be advantageous. Although most
considered systems use error-based learning principles, targeting learning resources
towards task-specific, motivational goals poses an interesting additional challenge.
That is, while “learning for control” may be the first principle, “learning for the
achievement of ecological relevant goals” may be an even more focused principle
that points out that learning should focus on those control aspects that are really
relevant to the learning system.

Table 5.2 shows the current anticipatory capabilities of the discussed learning
systems. Schema-based approaches all have similar properties, although the various
implementations differ in certain respects depending on their generalization capa-
bilities and utilized representations. Inverse modeling systems are additional mecha-
nisms that may shape behavioral learning directly. In addition, RNN approaches are
expected to be useful to learn the achievement of longer-term goals. Hierarchically
structured top-down, bottom-up systems may serve well to form abstracted repre-
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Table 5.2 The contrasted anticipatory capabilities also show several current drawbacks as well as
potential system combinations and integrations.

Aspect DYNA-PI XACS NN-b. DYNA SURE REACH Inverse Mod.
inv.model no no no yes yes
reward based yes yes partially yes no
general planning yes yes yes yes no
focused planning no yes no no no
offline simulation yes yes yes yes yes
flexibility low medium medium high medium
flexible goals no no limited yes limited
curious behavior yes yes yes yes yes
epistemic actions no no no no no
surprise mechanisms no no no no no
motivational goals no limited limited yes yes

sentations in space and time to be able to plan and act goal-directedly on a more
conceptual level.

Besides the potential learning improvements by the means of anticipatory mech-
anisms, the table shows that several other capabilities require future research. First,
faster behavioral adjustments due to unexpected sensory inputs have hardly been in-
vestigated. That is, surprise mechanisms could be exploited further for (1) fast self-
stabilization mechanisms and (2) the activation of additional cognitive resources for
more focused learning and adaptation. Kalman filtering-based updates and other er-
ror and information gain estimations may help to improve control and stabilization
capabilities in this respect.

Second, task-dependent planning mechanisms may be investigated further. The
combination of different predictive methods to enable prediction for action deci-
sions on multiple levels of abstraction seems inevitable. It also remains an interest-
ing question, how exact planning needs to be in order to be sufficiently effective.
Davidsson (1997) showed that one-track predictions (those that predict only the
usual behavior-dependent future and do not consider alternatives) are often suffi-
cient to improve behavior by inducing preventive mechanisms if the usual behavior
leads to undesired states.

Third, while curious behavior has been implemented in a few architectures, epis-
temic actions were not successfully shown in any of the considered architectures.
Epistemic actions may, however, be realized in several systems. However, it remains
unclear which predictive representations can most effectively trigger epistemic ac-
tions. It seems necessary that a system would need to generate hypotheses about the
environment and trigger actions to verify uncertain but relevant hypothesis. For ex-
ample, in a search task, a robot may look behind an obstacle to see if the ball might
be there. Kiryazov et al. (2007) have generated a first realization of such a system on
a real robot platform. The system is able to generate hypotheses based on analogy
making, consequently triggering goal-directed verification activity.

Hierarchical NN-based system architectures may offer another solution for the
realization of epistemic actions. Once higher levels are able to pre-activate lower
level neurons, these pre-activations may not only lead to the faster detection of such
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inputs but also to the activation of suitable motor activity to search for the hypothe-
sized inputs. In general, while systems might have a general curious action selection
mechanism, for example, for improving predictive model learning, epistemic actions
may be based on the same principle of predicted information gain, only that in this
case, plasticity needs to be more dynamic in that the entropy of current important
available information needs to be considered and selectively improved. Such mech-
anisms may lead to truly curious behavior and the automatic activation of epistemic
actions.

Fourth, the coupling of motivational mechanisms and potentially even emo-
tional mechanisms with the behavioral decision and control modules poses addi-
tional challenges. Context may be handled as a special input to the predictive and
to the control system and it may reflect current system motivations. The activated
contexts—activated, for example, by a neural activity pattern in the hierarchical neu-
ral architecture—should trigger matching motor programs and action decisions that
usually lead to the activated context. As discussed, coupled forward-inverse models
are a good candidate in this respect, selecting those coupled models that are maxi-
mally suitable given the current context.

5.6.3 Integration

The contrasted factors show that the challenges ahead in the design of competent,
flexible, and highly adaptive cognitive system architectures comprise system im-
provements of predictive and anticipatory capabilities. However, possibly even more
important, they require the effective combination and integration of various learning
and representational mechanisms.

Research currently still focuses on the improvement of particular predictive sys-
tem capabilities. In the future, though, we expect that successful combinations of
different predictive system capabilities will become increasingly important. We ex-
pect the following enhancements to be particularly fruitful:

1. The development of predictive systems that process and combine different sour-
ces of information (such as context information, sensory information, and action
information).

2. The implementation of predictive hierarchies that can generate predictions at dif-
ferent levels of abstraction in time and space.

3. The coupling of predictive representations with action control representations.

Especially the last point poses a great challenge but might be the key to the gen-
eration of actual cognitive systems. Perceptions need to be linked with appropriate
action codes (causing affordances and bottom-up action predispositions). And, vice
versa, action codes need to be linked to corresponding sensory effect codes that are
expected to change after action execution. With such a cognitive structure at hand,
many anticipatory capabilities might even emerge naturally from the system struc-
ture itself. However, even with a less sophisticated representation, several advanced
anticipatory capabilities will need to be investigated:
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1. Anticipatory representational shaping needs to be further developed, that is, the
learning of representations directly for effective behavioral decision making and
control.

2. The further development of curious behavior capabilities and epistemic action
capabilities: to realize a cognitive system that automatically activates epistemic
actions. It seems important that such behavior is triggered by the anticipated
information gain that seems most relevant for the achievement of current goals.

3. Anticipatory top-down mechanisms need to be further developed, which influ-
ence bottom-up sensory processing. This includes attentional mechanisms (cf.
Chapter 4) but also action decision making and control mechanisms since action
decision making can be considered as yet another attentional process.

4. A motivational and potentially emotional module may be coupled with the pre-
dictive system in order to induce even better action decision making capabilities,
enabling the execution of opportunistic actions and actions that are anticipated to
satisfy expected motivations (such as taking food and water on a hike).

The anticipatory enhancements are certainly not stand-alone but are very interde-
pendent and also highly dependent on the predictive representations used. Thus,
the discussed enhancements of the predictive capabilities of the system should not
(only) be pursued in isolation but rather should be designed from the beginning to
serve the realization of effective anticipatory action decision and control mecha-
nisms. It is expected that interactive, emergent, and unforeseen properties will be
detected along the way of this research endeavor and will as well lead to novel in-
sights in information processing, adaptive behavior, embodiment, and cognition as
a whole.

5.7 Conclusions

This chapter has shown that there are various challenges ahead. In order to create
competent, anticipatory, adaptive learning systems, the systems do not only need
to be competent in learning accurate predictive models of their environment but
also need to be able to effectively exploit the learned models for adaptive behavior.
This process is expected to be interactive rather than iterative in that the developing
predictive representations should immediately cause anticipatory mechanisms that,
vice versa, immediately influence the further development of the predictive repre-
sentations. The categorizations and contrasting discussions in this chapter may serve
as guidelines for the development of such more effective anticipatory mechanisms
and competent cognitive systems. It is hoped that this chapter does not only pro-
vide a useful overview of the discussed systems but that the chapter also encourages
further assessments of learning systems with respect to their predictive and antici-
patory capabilities and the creation of combinations of these systems to tackle the
challenges ahead.



Chapter 6
Anticipation and Believability

Carlos Martinho and Ana Paiva

6.1 Introduction

In this chapter, we discuss the relation between anticipation and believability. We
start by introducing the concept of believability and the importance of both emo-
tion and anticipation in the generation of believable behaviour. Then, we present
some related work examplifying how emotions and anticipation have been used in
the field of synthetic characters, with a particular focus on anticipation. Afterwards,
we present how the relation between anticipation and emotion has been researched
by the authors to create the emotivector, an anticipatory mechanism aimed at as-
sisting the generation of autonomous believable behaviour for synthetic characters.
As a fusion between the fields of affective computing and anticipatory computing,
the emotivector generates affective signals from the mismatch between predicted
and sensed values, and is inspired by the psychology of emotion and attention. We
present two applications of the emotivector, demonstrating its adequacy: one in the
realtime control of a situated, embodied agent inhabiting a virtual world, and an-
other, in the real-time control of the affective expressions of a robotic affective chess
‘buddy’. Finally, we describe a successful integration of the low-level emotivector
mechanism in a high-level cognitive agent architecture and the benefits of such in-
tegration.

6.1.1 Animation and Believability

The word animation derives from the Latin animare, meaning “to breathe life”.
However, to create the illusion that a synthetic character has a life of its own, motion
alone is not sufficient. Every movement in an animated scene must have a reason
for being. This argument lead John Lasseter, chief creative officer at Pixar and Walt
Disney Animation Studios (WDS) to state that technology could never bring life
into a character (Lasseter, 1987). Now, technology is taking up the challenge.

Artificial Intelligence (AI) researchers have long sought to create autonomous
creatures. The thought of these entities brings special delight when they are imag-
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ined to project a sense of being “really there”, appearing to have a life of their own.
In their quest towards creating the Illusion of Life, a term coined by Ollie Johnson
and Frank Thomas from WDS (Thomas and Johnston, 1994), AI researchers have
opened the door for traditional character animator techniques to become part of the
synthetic character inheritance.

One of the first concepts transferred from traditional animation to the field of syn-
thetic characters was the concept of believable character, a character that “provides
the illusion of life and thus permits the audience suspension of disbelief” (Bates,
1994). Although the concept falls prey to its subjective nature, it has being explored
in seversal media (e.g. literature, theatre), and WDS, in the late 1920s, developed
a set of practices that became the fundamental principles of traditional animation
to achieve believability (Thomas and Johnston, 1994). This reference is relevant for
AI researchers as it promotes the mind of the character as a driving force of the ac-
tion. When all the character’s movements are understood as the result of its thought
processes that connect them, then the character becomes more important than the
techniques that went into its animation. The audience forgets that it is an animation
and is actually entertained by a synthetic character, that in the process has gained a
life of its own.

6.1.2 Emotion and Exaggeration

The pioneering work by Joseph Bates’ group on the role of emotions in believ-
able agents brought two important concepts from WDS guidelines to the field of
synthetic characters: emotion and exaggeration. Based on the work of professional
animators, Bates argued that the clear portrayal of emotions is a central require-
ment for believable characters as the consistency of the expression relates to the
perception of personality and as such constitutes the affective base of believability
(Petta and Trappl, 1997). Before using the term believable characters (Bates, 1994),
Bates had referred to such characters as emotional characters (Bates, 1992). The
importance of clearly expressing emotions in the creation of believable synthetic
characters presented by Bates has been confirmed by subsequent work, such as El-
liott et al. (1999), Martinho et al. (2000), and Dias (2005). As a result, synthetic
characters generally have an underlying affective model.

Exaggeration appears as a means to convey more clearly the modelled emotional
states. As human are experts in recognizing human behaviour, a highly realistic hu-
man in a synthetic character places unconsciously increased demands on the char-
acter motion. Given the difficulty in producing completely realistic animations, the
success of the animation industry, both traditional and computer animated charac-
ters, has been the result of the creation of stylized and caricatured animated charac-
ters. As characters are not real, exaggeration can be used to convey more effectively
a certain emotion that otherwise could go unnoticed and break the suspension of
disbelief.
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6.1.3 Anticipation

This chapter focuses on a complementary line of research that is inspired by an-
other principle from WDS guidelines: anticipation. For an animation to be clearly
understood, the audience must know at all time: what is going to happen, what is
happening and what had just happened (Lasseter, 1987). The first part of the action
is the preparation for action, also referred as anticipation, and guides the attention of
the viewer to make sure that the motion is not missed, and meaning lost. Although
anticipation is such a central concept in the language of traditional animation, it has
had but a secondary role in the field of synthetic characters.

The quest for believability has sent researcher on two parallel paths: a pragmatic
approach inspired by arts such as drama and character animation, and another that
strives for higher levels of autonomy by providing the synthetic character with bio-
logically plausible (Blumberg, 2003) or psychologically sound behaviour (Marsella
and Gratch, 2003). Both paths emphasize the concept of believability as a dimension
of synthetic performance closely related to the adequate expression of emotion, and
different computational models of emotions have been proposed to aid achieving
believability — e.g. the several implementations of the cognitive theory of emotions
by Ortony et al. (1988) in Loyall (1997), Martinho et al. (2000), and Dias (2005).
However, few computational models explicitly integrate the concept of anticipation
in the creation of life-like behaviour. Anticipation is usually found ‘diluted’ in the
planning mechanisms of the synthetic character (Marsella and Gratch, 2003) or dis-
guised as an emotion by itself, such as in Plutchik’s theory of emotions (Plutchik,
1991). This chapter highlights anticipation as an essential part in the creation of
believable behaviour and the relation of anticipation with affect.

6.1.4 Anticipation, Emotion, and Believability

Anticipation and emotions are closely related. One of the principal functions as-
cribed to emotions is precisely that of anticipating events, especially when such
events are relevant to the central concerns of the organism (Strongman, 1996). If I
am walking in the woods and, suddenly, ‘something’ ahead on the path lets out a
loud roar, my heart races, my muscles tense, I ‘feel’ afraid and ready to run away.
Using emotions, I was able to decide among a great range of possible actions, by
eliminating most of the consequences of each from consideration a-priori, that is
without any time being wasted on their consideration (Guttenplan, 1994). Emotions
framed the process by rendering salient only a tiny proportion of the available al-
ternatives and conceivably relevant facts, anticipating which parameters should be
taken into account in the decision process and readying resources anticipated to be
relevant for the outcome.

As emotions may elicit anticipatory behaviour, the anticipation of an event may
also elicit an emotion. Continuing our example... To avoid the ‘frightening creature’,
I decide to take an alternative albeit longer path to return to the village where I am
headed. Unfortunately, near the end of the path, I realize that the bridge over the un-
crossable chasm has been destroyed — probably the storm, last night... I experience
disappointment, but also discouragement, as I am unable to do anything about the
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situation. Anger appears as a result of the unfairness of the situation: I was to de-
liver an important antidote to the village. Emotions elicited by anticipation are often
related with expectations, commitment towards important goals, and the validation
or invalidation of both expectation and goals. As such, a same outcome can lead to
a wide range of emotional experiences, based on different types of expectations. To
be prepared for what is to come is a crucial factor in survival. The emotional valence
of an expected event provides the ground on which to develop strategies that enable
us to adapt quickly and efficiently to changes. Even when the valence of an expected
event is unknown, there is evidence that our brain process this information taking
a pessimistic approach (Herwig et al., 2007). From an evolutionary perspective, we
cope better with a potential threat in the environment by anticipating the worst case.

Mood can also influence and be influenced by anticipation. Continuing our exam-
ple... I’m in a bad mood. I start anticipating all the consequences of not being able
to bring the antidote to the village soon. My mood worsens as negative thoughts
invade my ‘mind’. In a bad mood, not only perception will favour negative events,
but also the anticipation of events will tend to be biased by the mood valence (e.g.
positive or negative) (Miceli and Castelfranchi, 2002).

As it is possible to go from anticipation to an affective state and back, antici-
pated emotions may appear in the loop. Continuing our example... As I approach
the chasm, I perceive a feeble cry for help from below. I climb down using the rope
from the broken bridge, and find a small boy I had never seen before. He has clearly
been poisoned, those marks on his arm... are unmistakable, I have seen them too
many times. I have only enough for one application of the antidote, though... If I
walk away, the child will not stand a chance, and his face will haunt me for the rest
of my life. I know it, but I cannot bear to come empty handed back to the village:
the lives of several villagers depend on this antidote being analysed by the village
shaman. I carefully place the child on my shoulder and start moving back to the first
trail, determined to face the ‘frightening beast’ if necessary. I just can’t leave him
here to die, I would not be able to live with it. When making decisions, people often
anticipate the emotions they might experience as a result of the outcomes of their
choices. In the process, they simulate what life would be like with one outcome or
another (Meller, 2001). The anticipation of post-behavioural feelings can influence
people’s behaviour, as behavioural choices have been found to be based upon antic-
ipated emotional reactions following a particular behaviour (Richard et al., 1996).
While anticipating my behaviour and its context, I ‘pre-felt’ the emotion I expected
to feel in the anticipated situation, to some degree of intensity, and this had a rel-
evant impact in my decision process. Anticipating salient emotions is another vital
function of an organism. The expectation of an affective event can trigger regulatory
processes that prepare the organism to cope with a possible threat, for instance.

The use of both anticipation and emotion provide consistent and more explicit
meaning to motion, assisting in the creation of more believable scenes. Consider the
following story: upon returning to the village with the antidote, I decided to take
another path to avoid possible danger, but the bridge at the end of this path was
broken due to the storm of the previous night. I heard a cry for help. Using the rope
from the bridge, I found a child that was poisoned, and carried him on my shoulder
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back to the first trail, decided to face the danger ahead. Although this story contains
the same amount of detail as the previously described, it lacks believability. Using
anticipation and emotion, everything becomes more consistent, continuous, more
“meaningful”, more believable. Anticipation is much more than a design trick from
traditional animation but also an important factor to be taken into account in the
design of affective systems, when their use is to provide meaning to motion and
create believable behaviour.

6.2 Related Work

This section briefly describes relevant works in the field of synthetic characters that
address the issue of creating believable behaviour using emotions and anticipation,
with a strong emphasis on the anticipatory approaches.

6.2.1 Oz Project

In 1992, Bates, in collaboration with Loyall and Reilly, founded the Oz project
which aimed at creating virtual interactive theatres, populated by synthetic char-
acters developed following three important principles from traditional animation
(Thomas and Johnston, 1994): (1) the viewer should, at any time, be able to at-
tribute a clear emotional state to a character; (2) as the actions of a character depict
its inner thoughts and such thoughts are influenced by emotions, the viewer should
be able to view emotions in the actions of a character; (3) the actions should be
exaggerated to ensure that such emotions are clearly understood by the viewer.

To achieve such goals, Reilly and Bates (1992) developed an agent architec-
ture (Tok) composed of two subsystems: the EM system, based on the theory of
emotions from Ortony et al. (1988), which generates emotions based on percep-
tion of the virtual environment and the internal state of the agent; the HAP sys-
tem, which performs action selection according to current goals and emotions of
the character. Using the Tok architecture, one of the created worlds, the “Edge of
Intention”, presented three synthetic characters (the Woggles) the user could direct
to improvise stories in real time. The user could change the character’s mood, se-
lect a location in the virtual world towards which the character should move, or
select certain behaviour that would make the Woggle do or say something. Each
character immediately obeyed such directions by improvising an appropriate course
of behaviour, colouring its improvisation with life-like qualities: normall variabil-
ity, idiosyncrasies, mood-related modulations of behaviour, event-based changes in
mood, and adherence to social conventions.

6.2.2 EMA

Gratch and Marsella (2004) lay out a computational framework, EMA (acronym for
EMotion and Adaptation) where appraisal and coping act as core reasoning com-
ponents for human-like autonomous agents. This approach is grounded in Lazarus
(1991) cognitive-motivational-emotive system, and focuses on process rather than
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surface behaviour, namely: appraisal, which characterizes the person’s relationship
with the their environment, and coping, which suggests strategies for altering or
maintaining this relationship. Cognition informs both of these processes.

EMA implements the following algorithm: (1) construct and maintain a causal
interpretation of ongoing world events in terms of beliefs, desires, plans and inten-
tions; (2) generate multiple appraisal frames that characterize features of the causal
interpretation in terms of appraisal variables; (3) map individual appraisal frames
into individual instances of emotion; (4) aggregate emotion instances into current
emotional state and overall mood; (5) adopt a coping strategy in response to the
current emotional state.

EMA contributed to the design of a virtual reality training environment that
teaches decision-making skills in high stakes social situations: the Mission Re-
hearsal Exercise (MRE) training system. In MRE, intelligent agents control vir-
tual humans, playing the role of locals, friendly and hostile forces, and other mis-
sion team members. In the evaluation of MRE, Gratch and Marsella emphasize be-
havioural consistency as a key challenge facing the design of interactive life-like
agents, i.e. the coordination of all functions of the agent (e.g. perception, planning,
natural language processing) into a single coherent individual, over time. Although
the term anticipation is never used, anticipation can be found diluted in the affective
planning mechanism.

6.2.3 Duncan the Highland Terrier

In the attempt to build increasingly sophisticated autonomous interactive synthetic
creatures, Blumberg’s Synthetic Character’s Group at MIT Media Lab developed a
synthetic character to experiment with different kinds of expectations in graphically
embodied creatures: Duncan, the Highland Terrier. Duncan lives in a graphical envi-
ronment which he perceives through a synthetic perception system which includes
simulated audition and point-of-view rendering.

Anticipation is an important part of Duncan’s behaviour, generally using the term
“expectation formation” for anticipation. Two aspects related with the use of antic-
ipation will be discussed here: the work by Isla and Blumberg (2002) on object
persistence, and the work by Burke and Blumberg (2002) on apparent temporal
causality.

6.2.3.1 Object Persistence

Isla and Blumberg (2002) argue that the absence of expectations based on spatial
structure significantly impairs any pretension to life-likeness — “if a ball rolls be-
hind a wall, it would appear either broken or colossally stupid for the creature to
then not know where to look at it” — and provided Duncan with a sense of ob-
ject persistence, following the definition by Piaget (1954): “persistence of mental
images of objects after they have stopped being perceived, the ability of making
deductions about where the objects could be, and to act on these deductions”.
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Isla and Blumberg defend that a Gaussian distribution, although more compact,
is not an adequate representation in virtual environments, and propose a “probabilis-
tic occupancy map”, which is an hexagonal grid overlaid on the environment, where
each node contains the probability of a target object to be contained at that location.
At each step, each node passes some fraction of its own activation to its neighbours,
and an additional modifier that favours diffusion in the direction of movement of
the mobile object. The verification of the expectation is performed by the observa-
tion of the environment. When an object is perceived, the probability of the node
representing the location is set to 1 and all others to 0.

Isla and Blumberg defined salience as “the degree to which an observation vi-
olates expectation”. Following the work by Kline (1999), they point out two types
of violations: unexpected observations (which they designate surprise) and negated
expectations (which they designate confusion). At any time, the most salient object
is selected as the focus of attention.

6.2.3.2 Apparent Temporal Causality

Burke and Blumberg (2002) argue that because the representation of time and the
rate at which a creature experience relevant stimuli are fundamental for living sys-
tems, such representation can be used to enhance the life-like qualities of a synthetic
creature. Inspired by Ethology, they developed an approach on learning and action-
selection based on Gallistel and Gibbon (2000): Scalar Expectancy Theory (SET)
and Rate Estimation Theory (RET). These theories require an animal to represent
the length of the interval between stimuli and the rate of reinforcement associated
with various stimuli.

According to SET, when a creature perceives a salient stimulus, the creature starts
an internal timer that records the (subjective) interval between that stimulus and an-
other salient stimulus. Later, when the first stimulus is perceived again, the animal
starts another timer, and decides when to respond by comparing the ratio of the
elapsing interval to the remembered interval to a certain threshold. In RET, the de-
cision whether or not a stimulus merits a response is based on an animal’s growing
certainty that a stimulus has a substantial effect on the rate of reinforcement. By
including SET and RET, Burke and Blumberg went beyond “traditional architec-
tures that integrate an analysis of the past with the ability to react to the present, and
include a representation of the future”. As such, the approach is of an anticipatory
system and the use of both models endow a synthetic creature with the ability of
predicting and planning for future events by discovering causal relationships in the
world.

6.3 Emotivector

6.3.1 Architecture

The emotivector is an anticipatory mechanism extending the agent architecture of
Russell and Norvig (1995) and is located on the pathway from the sensors to the
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Fig. 6.1 On the left, Russel and Norvig’s agent architecture, composed by a set of sensors snsi

sending encoded signals to a processing module that controls a set of effectors e f fi acting on the
environment. On the right, the same architecture enhanced with a module composed of several
emotivectors.

processing module. Figure 6.3.1 shows the agent architecture and the emotivector
enhancement.

The emotivector observes the signals flowing from the sensors to the processing
module1 and, from this observation, anticipates the next expected value. The mis-
match between the expected and sensed values generates an affective signal that is
sent along with the sensed value.

In other words, the emotivector is a simple anticipatory mechanism coupled with
a sensor that: (1) monitors the value of the sensor and predicts its next state; (2)
determines the affective state that arises from the mismatch between the predic-
tion and the sensor input value; (3) sends this information along with the sensor
value. When a value from the sensor reaches the processing module of the agent,
the tag provides a recommendation such as ‘this signal value is much worse than
expected: you should look at it carefully’, or ‘nothing new here: it is slightly be-
coming brighter, as expected’. The processing module of the agent can then take
these recommendations into account for its further processing.

We will first present the emotivector’s anticipation model then describe each one
of the two main components of the affective signal: salience and sensations.

6.3.2 Anticipation Model

The computation of the emotivector relies on its capacity to predict the next sen-
sor value. Each time a new signal reaches the sensor, the emotivector computes the
sensor next expected value. The predictor implements an hybrid algorithm based on
the Kalman filter (Kalman, 1960) and the generalized recirculation algorithm (Hin-
ton and McClelland, 1988), whose learning rate is mediated by the current affective
state (i.e. experiences associated with intense affective states will have a greater

1 For the sake of simplicity, all signals flowing from the sensors to the processing module are
one-dimensional signals within the interval between 0 and 1.
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influence on the prediction). This algorithm provides the emotivector with a sim-
ple and efficient generic predictor which does not require any initial fine-tuning to
work. More details on the implementation of the prediction algorithm can be found
in (Martinho and Paiva, 2006b).

6.3.3 Salience Model

When a new value reaches the emotivector, it is confronted with its previously com-
puted expected value. The emotivector then estimates the signal a-priori salience
by computing two components inspired by Posner’s two-system model of attention
(Posner, 1980): the exogenous component and the endogenous component. The ex-
ogenous component is inspired in bottom-up, automatic reflex control of attention,
and emphasizes unexpected values of a signal: the greater the difference between
the expected value and the input value, the greater the exogenous salience. The en-
dogenous component is inspired in top-down, voluntary control of attention, and
emphasizes the closeness of a signal value to any actively searched values. In other
words, if the agent is looking for something, similar things will likely attract its at-
tention: the closer the value of the signal gets to a “desired” value, the greater the
endogenous component will be. The interaction between both components define
the attention grabbing potential of the signal, by adding or subtracting a component
from the other (Müller and Rabbit, 1989).

6.3.4 Sensation Model

The existence of a desired value for a sensor allows the emotivector to associate
a certain ‘quality’ to the signal in the form of a basic affective state: a sensation,
in the sense given by Harlow and Stagner (1933). To generate such a sensation, a
model inspired in early behavioural theories of emotions is used. The sensations
are defined across two dimensions, as in (Young, 1961): valence and change. The
model works as follows. The emotivector anticipates a reward (if the prediction is
closer to the desired value than the current value) or a punishment (in the oppo-
site situation). When the ‘real’ reward or punishment reaches the emotivector, it is
confronted with the reward or punishment expectation. As a result, and following
an approach inspired in the behavioural synthesis of Hammond (Hammond, 1970),
one of the four following basic sensations is triggered: S+ or positive increase, if
reward is stronger than expected; $+ or positive reduction, if reward is weaker than
expected; S- or negative increase, if punishment is stronger than expected; and $-
or negative reduction, if punishment is weaker than expected. Figure 6.2 shows the
four sensation model and their eliciting conditions.

6.3.5 Selection Model

When all signals from the sensors finally reach the processing module of the agent,
each one with a tag from the associated emotivector, how does the agent select which
are relevant?
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Fig. 6.2 Four-sensation model: S+ (positive increase) if the reward is stronger than the anticipated
reward, $+ (positive reduction) if the reward is weaker than the anticipated reward, S- (negative
increase) if the punishment is stronger than the anticipated punishment and, $- (negative reduction)
if the punishment is weaker than the anticipated punishment.

Different strategies can be used. However, and to avoid the limitations of the winner-
takes-all strategy, the low efficiency of salience order processing, and the inelegance
of setting salience thresholds, error prediction was added to the emotivector (for a
discussion of the selection strategies, please refer to (Martinho, 2007)). A second
(identical) predictor was added to the emotivector which receives the error predic-
tion each time a new value enters the emotivector and is compared with the expected
value. Based on the history of error predictions, and using the same algorithm as the
first predictor, this second predictor estimates the next prediction error. When the
‘real’ prediction error is greater than the estimated prediction error, the emotivector
marks the signal as relevant.

6.3.6 Uncertainty

Error prediction provides an error margin for the estimation of the next sensor value.
Each time the first predictor estimates the next value of the sensor, the second pre-
dictor estimates how thrustworthy this prediction is, by estimating the prediction
error. As such, the emotivector is able to model, in a certain sense, the uncertainty
associated with the prediction.

The introduction of uncertainty had an interesting side-effect on the sensation
model: it allowed to extend the four-sensation model to a nine-sensation model. In
the four-sensation model, when the emotivector is expecting a reward (i.e. is ex-
pecting the value of the signal to move closer to a desired value), the outcome can
only be two-fold: the reward can be better (a S+ sensation) or worse (a $+ sensa-
tion) than expected. With the uncertainty associated with a prediction, the outcome
can now be three-fold: ‘significantly better than expected’, ‘significantly worse than
expected’ or ‘better, as expected’. This approach more than double the sensations
automatically generated by the emotivector. Figure 6.3 represents the nine-sensation
model.
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Fig. 6.3 Nine-sensation model. In the figure, R stands for reward and P for punishment. The first
line of the figure shows the three possible outcomes when the emotivector is expecting a reward:
‘significantly better than expected’, ‘better, as expected’, and ‘significantly worse than expected’.
The use of uncertainty allowed for the introduction of five new sensations (represented by darker
cells). From top to bottom, and left to right, they are: ‘reward is as good as expected’, ‘unexpected
reward’, ‘no significant reward nor punishment, as expected’, ‘unexpected punishment’, and ‘pun-
ishment is as bad as expected’.

6.4 Aini, the Synthetic Flower

Aini is a synthetic flower “living” in a stretch of shallow water, a synthetic charac-
ter created to help us evaluate the adequacy of the emotivector mechanism in the
creation of believable behaviour. Aini is a situated, embodied virtual agent which
dynamics are controlled by a physics engine. A detailed description of the imple-
mentation of Aini’s virtual body can be found in (Martinho and Paiva, 2006a).

An interactive task was designed to test the emotivector model: a word puzzle
game in which Aini helps the user to uncover a four-letter word by reacting con-
sistently to the user’s actions in the virtual environment. To complete the word,
the user has to place a set of letter cubes onto wooden platforms representing the
word letters and their relative position in the word. To allow for a more immersive
interaction and account for situatedness and embodiement, the simulation is fully
tridimensional and physics controlled. Figure 6.4 shows Aini in her virtual environ-
ment. For a fully detailed description of the experimental settings and the challenges
involved in such a game, please refer to (Martinho, 2007).

6.4.1 Emotivectors in Action

For this experiment, a grid of 25 emotivectors was used to build Aini’s synthetic
vision system (see Figure 6.5). This approach allowed behaviours such as ‘casually
look around’ and ‘quickly look at something new’ to emerge from the interaction
with the user. For more details, please refer to (Martinho, 2007).
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Fig. 6.4 Aini and the Word Puzzle Game. The three last letters of the word (‘I’, ‘L’ and ‘A’)
are uncovered (they are read from Aini’s perspective). Aini is currently expressing an ‘unexpected
reward’ sensation towards the last introduced letter (’L’). The user had been playing around with the
cubes for so much time (instead of performing the task) that Aini was not expecting any progress
to happen so soon.

Fig. 6.5 Aini synthetic vision system. Aini’s synthetic vision system is implemented as a 5 x 5
sensor grid. Each sensor is associated with an emotivector and measures the distance to the nearest
object in a predefined direction within Aini’s field of view. At any time, the focus of attention is
decided based on the salience of the grid emotivectors, while the intensity controls the quickness
of the animation.
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Additionally, a single emotivector was associated with the progress of the task2 and
generated the task related sensations, each one mapped onto particular animation
parameters. An interesting fact is that, for the user, these sensations seemed to ac-
count for the history of the interaction. This is best understood through an example.

Consider the case of a user trying to uncover the word ‘ZEAL’. Aini starts in
a neutral state. The user starts playing around in the environment rather than to
concentrate on the task. Because no change occurs in task progress, the prediction
error drops, representing the fact that Aini is pretty convinced that nothing is going
to change relatively to the task.

When the user finally places her first letter (‘L’) in the wrong place, Aini ex-
presses an ‘unexpected punishment’ sensation. Aini stops moving and lowers its
‘head’ (a similar expression is represented on the right of Figure 6.6). Aini now
expects more ‘punishment’ to come although she is very uncertain about it.

Fig. 6.6 Aini’s affective expression. For the purpose of the experiment each one of the nine sen-
sations generated by the emotivector was directly mapped into animation parameters. The picture
on the left shows a positive sensation being expressed while the picture on the right depicts the
expression of a negative affective state.

Influenced by Aini’s negative expression, the user removes the letter ‘L’ from the
word. As the task progress increases by a significant amount, Aini expresses a
‘weaker punishment’ sensation: it rises its ‘head’ and waves encouragingly (a sim-
ilar expression is represented on the left of Figure 6.6). It is important to note the
following: if the user decides to place the letter ‘L’ again in the same (wrong) place-
holder, Aini will react differently from the first time, as the emotivector inner state
has changed in the meantime.

The user now places the ‘L’ letter cube in the correct position. As there is still a
great uncertainty associated with the emotivector prediction, an ‘expected reward’
sensation is triggered and Aini expresses her confidence regarding the user progress
in the task. Afterward, the user places the ‘A’ letter in the right position. As the

2 The progress of the task is measured from ‘0’ (‘none of the letters belong to the word’) to ‘1’
(‘all the letters are in the correct position’) using an approach inspired in the game ‘mastermind’
(M. Meirovitz, 1971). The initial value is ‘0.5’ (‘no letters on the wooden platforms’).
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margin of error has now dimished, the value entering the emotivector is outside the
error prediction margin, and a ‘stronger reward’ sensation is triggered, making Aini
express total bewilderment to the user.

This simple example shows how rich an interaction can become by simply map-
ping the emotivector basic sensations onto a set of affective expressions. The history
of the interaction and the timing of the different actions will make the emotivector
trigger different basic sensations in response to a same user action.

6.4.2 Evaluation

The experimental assessment of believability is a non-trivial task, mainly due to
the subjective nature of the concept of believability itself. In the synthetic character
field, believability is usually evaluated by asking the subjects to answer a ques-
tionnaire evaluating their satisfaction regarding the interaction with the synthetic
character. To help evaluating believability, the experiment was designed in such a
way that for the user to finish the task, the behaviour of the synthetic character had
to be emotionally consistent (i.e. how the synthetic character express its affective
state should be consistent with the user actions) and demonstrate intentionality (i.e.
how the character expresses its affective state has to be consistent with its perceived
intentions).

Subjects were asked to perform a series of word puzzles with four synthetic char-
acters sharing the same graphical appearance but behaving differently. Two acted as
control characters and the two others evaluated the emotivector approach, compar-
ing it to another approach using in the current generation of computer games. More
than 280 word puzzles were played by more than 60 male and female subjects from
5 to 79 years old, and with different computer skills.

The results confirmed the adequacy of the emotivector approach: no subject was
able to finish the game with the control characters, suggesting that it is impossible
to finish the game by brute force alone, and while all subjects succeeded with the
emotivector-based synthetic character, only 20.6% finished the game with the game-
based approach.

The experiment revealed three interesting results. First, that emotivector based
synthetic vision provides with a natural form of interaction (e.g. by waving an ob-
ject to draw the character’s attention to it). Second, that even a single emotivector
(in this case, the emotivector connected to the task progress) can create rich and
non-repetitive behavior that seems to account for the history of past interactions in a
meaningful manner. Third, that the emotivector based behavior may, in certain situ-
ations, outperform significantly the approach used in the current generation of com-
puter games. A detailed description of the results can be found in (Martinho, 2007).

6.5 iCat, the Affective Game Buddy

Social robots are robots especially designed to interact with people, helping them
to perform tasks in a plethora of diversified environments. One particular domain
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of application of such robotic characters is as pedagogical agents that work as as-
sistants to a learning task and provide immediate feedback regarding the learning
experience, with the purpose to improve the learner’s performance. Furthermore,
the introduction of embodiment in learning environments positively affects the per-
ception of the learning experience, especially when such synthetic characters convey
emotional responses to the tutoring situation (Breazeal, 2003). This section focuses
on a specific type of learning environment: turn-based educational games.

An experiment was designed based on the hypothesis that if the synthetic char-
acter acts as a tutor (or game companion) to the user with whom it is interacting,
and its emotional behaviour reflects what is happening in the game, then the user
will be able to better perceive the game state and her performance will increase. To
generate such emotional states, and control the consequent emotional expression of
the robotic character, the emotivector mechanism was used. If successful, such an
approach would suggest that any game for which it is possible to provide an evalu-
ation of the game state at a certain time, from the point of view of one player, could
be coupled with a robotic character, that could automatically display believable be-
haviour, strengthening what is occuring in the game.

To evaluate such an approach, a chess scenario was developed where users could
play a game of chess against a iCat robot from Philips using an electronic chessboard
from DGT Projects (DGT, 2007). The iCat is an available plug-and-play robot ca-
pable of mechanically rendering facial expressions and was designed to simulate
human-robot interaction under the perspective of social robotics (Breemen, 2004).
Figure 6.7 shows the system setup and portays typical interactions occuring during
a chess game.

6.5.1 Emotivectors in Action

The system is composed of two main parts: the chess subsystem and the emotion
subsystem. The chess subsystem contains the interface with the electronic board
and a chess engine (Kerrigan, 2007) used to evaluate the board state and compute
the iCat’s next move(s). The emotion subsystem is responsible for managing the
character’s emotional state. It receives information from the chess subsystem, and
sends animation commands that blends the prescripted animations and behaviours
in the iCat platform. In other words, the emotion module receives the evaluation
of the game state performed by the chess engine, and generates the affective state
of the robotic agent, which is composed of two components: instant reactions and
mood, inspired by Scherer’s work (Scherer, 2000).

Instant reactions refer to the relatively brief episodes of an external or internal
event as being of major significance. They have a short duration but are quite ex-
plicit. Instant reactions can be associated with previous expectations, particularly
in a turn-based game, where we inevitably build an idea of the opponent’s perfor-
mance, and tend to anticipate her performance during the game. In the chess sce-
nario, instant reactions are generated by an emotivector mechanism, which input is
the evaluation of the board by the chess engine after the user has played. Each one
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Fig. 6.7 Interaction during a chess game

of the nine sensations is mapped into predefined animations, which are blended in
the iCat robot.

Mood is a relatively lasting affective state, less specific, often less intense, and
thus less likely to be triggered by a particular stimulus or event. Mood is an unidi-
mensional variable depicting intensity and valence and is computed as a function of
the current game state. In other words, the better the evaluation of the game from
the iCat perspective, the more positive the mood will be, and conversely for the neg-
ative mood. The mood value is used to control some paramenter used by the idle
animation that are played in between the instant reactions triggered by the user’s
plays.

6.5.2 Evaluation

To test the effect of the iCat’s emotional behaviour based on the emotivector, an
experiment with 9 participants with ages ranging between 7 and 31 years old was
conducted. The main focus of the evaluation was to find out if the iCat’s emotional
behaviour had any impact on the user’s perception of what was happening on the
game.
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To measure the success of the user perception of the game, what the user “thinks”
about the game at a certain moment is compared with the value obtained from the
chess engine’s evaluation function. As such, at a certain board position, if these two
variables match with each other (e.g., if the user thinks that iCat is loosing and the
chess evaluation function also indicates that iCat is in disadvantage), the user is
considered to have successfully perceived the game state.

The experiment was conducted with three different control conditions regarding
to the iCat’s emotional behaviour:

1. The behaviour generated was in agreement with the emotivector model;
2. The emotional behaviour was “incoherent” and random. In this case, the emo-

tional expressions to the user’s move are randomly chosen between all but “co-
herent” responses;

3. Without expressing the emotional state, that is, a neutral/idle, behaviour.

These three conditions were used with all the users (in different orders) in three
different exercises (of different difficulties). At the end of each exercise, the ex-
perimenter asked the user what was the state of the game and that perception was
recorded. As such, the tests provided a sample of 27 values for each one of the three
control conditions.

The results were as follows: in the “neutral” condition, 20 out of 27 were suc-
cessful at perceiving the state of the game; in the “random” condition, 16 out of
27 were successful; and in the “emotivector” condition, 23 out of 27 were success-
ful. Thus, the success measure varied among the three different control conditions,
and, the results are better when the iCat exhibited the affective behaviour described
(emotivector based). These results suggest that such behaviour helps the users to
better understand the game.

A Spearman correlation test with a two-tailed test of significance for the sam-
ples of each one of the three control conditions was performed with three different
variables to correlate: (1) the user’s perception of the game based on the iCat’s ex-
pression; (2) the user’s perception of the game based on her overall analysis and
(3) the “actual” game state, obtained from the chess evaluation function. The main
result found was that the correlation between the “user’s own analysis of the game”
and the “actual game state” variables is higher when the iCat is controlled by the
emotivector mechanism, with correlation of 0.930 (p < 0.001). With the random
emotional behaviour samples, the correlation decreases to 0.485 (p = 0.010) and in
the games that iCat did not express any affective state the value is 0.680 (p < 0.001).
This result suggest that the user’s perception of the game increases when the iCat’s
emotional behaviour is in agreement with the actual state of the game.

Regarding to the correlation between the perception of the game based on the
iCat’s expression and the user’s own analysis of the game, correlations between
these two variables were found in two of the three control conditions. When using
the values from the emotivector system, such correlation is really strong (0.958 for
p < 0.001), whereas in the neutral emotional behaviour the value decreases to 0.580
(p = 0.002). Despite the decrease in the value, the variables still remain correlated
with the neutral behaviour. This may result from the fact that users may interpret
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the iCat’s neutral behaviour taking into account their opinion in what is happening
in the game. However, as far as the random condition is concerned the variables are
negatively correlated (-0.116), although with a poor significance (p = 0.564).

6.6 Emotivector Integration in Agent Architectures

Although designed to assist in the automatic generation of believable behaviour, the
emotivector is a low level anticipatory mechanism working at the sensory interface
level, and as such can be integrated in higher level agent architectures. An example
is provided by Piunti et al. (2007d), where the notion of subjective expected utility
(SEU) guiding the action-selection process was substituted by an affective expected
utility (AEU) which incorporated the affective information provided by the emo-
tivector. Basically, the AEU added a modulating term that would reinforce a certain
stimulus in the case of a positive feeling and diminish it in the case of a negative
feeling.

The design, encoding and testing of the integrated system showed that, although
the AEU would not affect performance significantly in the case of static trends in
stimuli, when seasons and sinusoidal progress of stimuli were used, the AEU agents
outperformed the SEU agents. Piunti et al. (2007d) point out that the advantages of
using the emotivector were two-fold. First, the emotivector assessed a better predic-
tion model for signals that evolve continuously over time. Second, the emotivector
contributed with a relevant affective bias, as the sensations generated by the emo-
tivector would provide the agent with a modulated motivation to decide which is the
most hopeful area to explore. In opposition to the SEU agents, the AEU agents could
distinguish the case in which a great likelihood was coupled with a low utility to the
case where a high utility is coupled to a scarce likelihood. Additionally, the AEU
agents could use the additional affective component indicating how good is the feel-
ing toward a certain choice, thus anticipating the potential affective consequences
of alternatives.

6.7 Conclusions

In this chapter, we discussed the relation between anticipation and believability, and
how emotions are an inherent part of the discussion. We saw how the pioneering
efforts addressing the creation of believable behaviour emphasized the importance
of traditional animation, namely the importance of emotions. We also discussed how
anticipation, although an important concept in traditional animation techniques, has
had but a secondary role in the field of synthetic characters, and presented some of
the few recent works that consider anticipation as a critical feature in the generation
of believable behaviour.

We discussed how the relation between anticipation and believability was re-
searched by the authors to create the emotivector, a simple anticipatory mechanism
aimed at assisting the generation of believable behaviour for synthetic characters
implemented as software agents. An emotivector, when coupled with a sensor: (1)
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monitors the value of the sensor and predicts its next state; (2) generates an affec-
tive state that arises from the mismatch between the prediction and the sensor input
value; and (3) sends this information along with the sensor value. When a value
from the sensor reaches the processing module of the agent, the emotivector affec-
tive tag provides a recommendation such as ‘this signal value is much worse than
expected: you should look at it carefully’, or ‘nothing new here: it is slightly becom-
ing brighter, as expected’. The processing module of the agent can then take these
recommendations into account in the selection of action, namely in the control of
behaviour related with emotional expression.

We presented two scenarios depicting possible applications of the emotivector
mechanism in the generation of behaviour perceived as believable by the user, and
their evaluation. The first scenario showed how the emotivector was successfuly
used to control a realtime situated embodied character inhabiting a virtual world,
Aini, that interacted with a user to solve a word puzzle game. The second scenario
showed how the emotivector was successful in controlling a robotic character acting
as a game companion, the iCat robot, in a pervasive game of chess. The results of
the evaluation of both scenarios suggest that, in some applications, the emotivec-
tor mechanism is able to generate affective states that can be used to control the
affective expression of a synthetic character, and that such behaviour is believable
and understandable by the user. Furthermore, because it is a low level anticipatory
mechanism working at the sensory interface level, the emotivector can also be inte-
grated in higher level cognitive architectures. We presented a successful example of
such an integration and the impact on this particular system.

The context-free nature of the emotivector allows it to be portable to different
contexts, in both virtual and real world environments. For instance, the same sys-
tem used for the chess game could a-priori be applied to any game in which it is
possible to obtain the (eventually heuristic) evaluation of the state of the game for
one of the players. Using such an evaluation, the game companion would exhibit
automated believable affective behaviour, without needing to know the peculiarities
of the game it is playing.

It is important to remember that, at the core of the emotivector mechanism, is
anticipation: the affective state generated by the emotivector results from the mis-
match between sensed and expected values, and the mismatch between sensed and
expected errors in prediction. As such anticipation plays an important role in the
automatic generation of believable behaviour by the emotivector.



Chapter 7
Anticipation and Emotions for Goal Directed
Agents

Emiliano Lorini, Michele Piunti, Cristiano Castelfranchi, Rino Falcone, and
Maria Miceli

7.1 Introduction

Breakthrough challenges in the cognitive modeling are in providing artificial agents
with abilities to operate in open systems where dynamism, partial knowledge and
non-determinism exact agents not only to to quickly react to events but also to an-
ticipate decisions, facing with uncertainty and unpredictability of future events. One
of the key issues is then to enhance cognitive reasoning with emotions and affective
abilities. The rationale behind the introduction of emotions into artificial agents is
manifold. Since the grew up of cognitive sciences and applied psychology during
60s, the negative bias against emotions, and more generally against ‘irrational’ or
‘not reason-based’ responses, has been practically reversed. The functional value
of emotions has now been widely acknowledged and their evolutionary contributes
have been especially emphasized (Simon, 1967; Fridjda, 1986; Parrott and Schulkin,
1993; Lazarus, 1991). From the perspective of biological evolution, emotions can
be considered psychological mechanisms that evolved to solve adaptive problems
(Toby and Cosmides, 1990) (i.e. escaping threats or predators, finding food, shelter
and protection, finding mates) and thus surviving and delivering one’s genes to one’s
own offspring. According to this view, emotions mediate behaviors for organisms in
order to enhance long term adaptation and to answer their recurrent ecological de-
mands. Otherwise, emotions provide evolutionary solutions to many of the critical
problems implied by agents’ situated interactions with their environments, for in-
stance by enhancing proactiveness, by favoring the adaptive allocation of bounded
computational resources, by providing anticipatory mechanisms for adaptation to
mutable contexts, etc.

Traditionally AI emphasized individual problem solving in closed domains,
where agents face with short term interactions and are assumed to deal with a
bounded rationality and a narrowed number of goals. Taking the perspective of Af-
fective Computing1 has forced designers to deal with different domains, where cog-

1 The term is introduced by Rosalind Picard (1997).
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nitive agents are assumed to juggle deliberation between multiple goals, facing with
heterogeneous influences, uncertainty and multiple problem solving styles. Most
recognized role played by emotions for agent cognition is their informative function
exploited for agents adaptation. The idea is that, to be adaptive in open environments
and dynamic contexts, artificial agents strongly require a proactive adjustment of
their internal model over time, in order to adaptively assess resources, exploit infor-
mational feedbacks, learn from experiences and become better at achieving goals.
To this end, emotions serve as a control mechanism for cognition may accomplish
the functions to help the cognitive system in arbitrating different goals in uncer-
tain conditions, by informing the underlying reasoning processes when some par-
ticular event is requiring servicing (Simon, 1967). In general terms, emotions can
play the pivotal role of connecting the various layers of a cognitive architecture,
allowing suitable functional shortcuts for reactivating components (or information)
which were not available, or under attention, at a given moment. Anyhow, one of
the neglected functions ascribed to emotions in computational models of cognitive
systems is precisely in enabling anticipation. As we will explain in this chapter,
emotions play many pivotal roles for anticipation, i.e. in building expectations, in
pro-actively responding to events, in allocating computational resources, in assess-
ing knowledge and regulating purposes, especially when they are relevant to the
concerns and well-being of the organism. A substantial part of this chapter is de-
voted to define goal directed architectures enabling anticipation through emotion
and expectation processing. An ontology of anticipatory mental states (e.g. predic-
tions, expectations, etc.) is provided to clarify what cognitive anticipation exactly
is. This part of the chapter is fundamental as a conceptual basis for the implementa-
tion of expectations and emotions in a cognitive system. Focusing on goal directed
systems, we will mainly deal with cognitive expectations and their related emotions
such as surprise, disappointment and relief. In particular, we will focus on mismatch
based emotions (in cognitive reasoning, discussing them as mechanisms playing a
pivotal role in learning, attention, belief revision and action execution. In order to
functionally assess the dealings between emotion and anticipation we will refer on
their manifold causal relationships. Following the theoretical assessment provided
by Castelfranchi and Miceli (ress) and strongly focusing on the various aspects of
cognitive expectations, we will consider the following themes:

• The mediating roles of emotions between the behavioral stimulus-response atti-
tudes elicit forms of anticipation producing emotion-based expectations. On the
one side preparatory emotions may trigger anticipation which is not based on
explicit predictions of future states and events. On the other side, premonitory
emotions may accomplish the function of signalling and activating latent mental
states and expectations which are physically represented within agent’s internal
states.

• Besides, the esteem of expectations and predictions of future states upon which
an agent may be concerned with, can trigger emotions2. This kind of expectation-

2 Notice that, differently from cognitive appraisal on ongoing events, here the appraisal is antici-
pated and rely on predictions of future events.
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based emotions can be generated by the invalidation of an expectation, thus a
mismatch between what was expected and what is perceived in a given instant of
time.

• A third class of interaction between emotions and anticipatory abilities assesses
the anticipation of future emotions. Rather than on events and future states to
face with, here the anticipatory ability handles representations directly referring
on expected emotions, which may strongly affect agent’s decisional processes
and strategies.

By adopting a functional approach based on expectations processing, we will dis-
cuss a set of important behavioral and mental changes as byproducts of expectation
invalidation, from which surprise originates. Besides, we will claim that there is not
just one single form of surprise, but several forms of surprise should be distinguished
on the basis of cognitive appraisal involving current mental states. Furthermore we
will survey computational models converging with recent studies that are pointing
out the enhancement of adaptive abilities in introducing expectations and emotions
in reasoning of artificial, goal directed agents.

The reminder of this chapter is organized as follows. Section 7.2 presents re-
cent advances in the field of affective computing, discussing the peculiarities of the
different approaches. In section 7.3 we discuss the typology of expectations and
predictions proposed by Lorini and Castelfranchi (2007). A related typology of sur-
prise is given in section 7.3.2. Section 7.3.3 is devoted to clarify why surprise is so
important in cognition. Section 7.3.3.1 focus on a specific role of surprise in cog-
nition by presenting the computational model of surprise developed by Lorini and
Piunti (2007). In particular, we describe surprise-based filter mechanism that is re-
sponsible: 1) for signaling the inconsistency between beliefs and an incoming input
which is relevant with respect to the current task to be solved; 2) for the revision of
beliefs and expectations on the basis of the incoming relevant information. Section
7.4 describes a computational model for goal directed agents, exploiting mismatch
based emotions like surprise for enhancing their anticipatory abilities. The mani-
fold relationships between anticipation and emotions are described along with the
discussion of the architecture. Finally, in section 7.5, we provide discussion and
concluding remarks.

7.2 Related Works in Affective Computing

Even if many of the instrumental relations between complex emotions and their
function within the mind are far to be explicitly formalized and appreciated, nu-
merous theoretical models have been proposed during the last decades dealing with
affective reasoning. Many of these models of emotions have been coherently formu-
lated in order to be tightly implemented with a computational system, and rapidly
imposed their contributes to the research community in the field of cognitive model-
ing and Artificial Intelligence. Recent computational systems for deliberative agents
are enucleating the cognitive processes underlying emotions and their functional
roles in driving intelligent agents. Unfortunately, a series of critical issues arise
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when emotions were applied in practice. In turn, standard goal directed architectures
provide arbitrary strategies and typically are implemented using highly domain-
specific patterns, thus resulting slightly scalable, monolithic, not flexible enough
to embed anytime and domain independent processes. The wide part of these ap-
proaches are limited to the implementation of domain specific or rule based sys-
tems, aimed at enhancing adaptive capabilities in dynamic environments. More than
on the key aspect of anticipation, the actual computational models mainly focus on
a causal description of basic emotional processes and attempt to implement this de-
scription more or less directly in agents. Simple affective states are generally placed
in terms of their effects on agent’s reasoning. Various influences on behavioral and
attentive activities are described, while emotions are generally coupled with agent
control mechanism in order to tight different processes and computational modules
underlying reasoning.

Different solutions span from reactive methods of control, similar to those em-
ployed in primitive biological organisms and artificial life (Scheutz and Sloman,
2001), to the affective control of computational resources inspired by Simon (1967)
and the decision making processes affected by emotions (Doyle, 1992; Gmy-
trasiewicz and Lisetti, 2000; Lowenstein and Lerner, 2003; Busemeyer et al., 2003).

The computational model given by Macedo and Cardoso (2001, 2004) proposed
a solution for exploration of unknown environments with motivational agents where
surprise govern the intentions and ‘action-goal’ processes, thus eliciting action-
selection through evaluation of utility functions.

The remarkable work by Scheutz (2002, 2004a) studied artificial agents imple-
menting emotional control mechanisms and incrementally define a framework for
embodied agents, where basic emotions are argued to enhance their adaptiveness in
ecologically inspired tasks. Scheutz works further defined the general, domain inde-
pendent principles for the evaluation of the effectiveness and the utility of emotions
through extensive computer simulations (Scheutz, 2004b).

A particular class of emotion driven architectures are those based on appraisal
theory (Arnold, 1960; Frijda, 1987; Lazarus, 1991). They provide emotions to coor-
dinate the different computational and physical components required to effectively
interact in complex environment. Emotional signals are generally used as a causal
precursor of the mechanisms to detect, classify, and adaptively respond to signif-
icant changes of environment. Early approaches used domain dependent schemes
and rules to derive and support to appraise events and govern action selection and
planning strategies (Elliot, 1992; Moffat and Frijda, 1995).

In their Extended Mental State Framework (EMSF), Correa and Coelho pro-
posed a goal directed architecture where goals are defined with different attributes
(i.e. ‘importance’, ‘intensity’, ‘insistence’ and ‘urgency’ with different degrees) and
included in higher level Mental States, defined as informational structures inform-
ing agents behavior and allowing to relate situations, in the world, to actions (Correa
and Coelho, 2004). In more detail, Mental states are placed through programmable
structures of rules and constraints, supporting complex forms of social organization
and enhancing agent interactions with the environment.
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Gratch and Marsella (2006, 2004) presented a domain independent computa-
tional model stressing the many different causal relations between emotions and
cognition. Their computational model EMA placed cognitive processes and emo-
tions in mutual relations: emotions arise from an evolving subjective interpretation
of agent relation whit his environment either affecting either being affected by cog-
nitive states and behavior. To process emotions, EMA defines a domain independent
taxonomy of appraisal variables and produce emotions by processing the causal at-
tribution of chains of events. By comparing ongoing beliefs, desires and intentions
with external events and circumstances, emotions are elicited in terms of appraised
variables, namely a superset of rules and criteria placed in terms of desirability (goal
importance) and likelihood (probability of a given event). Once appraised, emotions
are then responsible for two kind of coping strategies: 1) problem-focused coping
strategies modifying agents behavior in terms of action selection, planning and al-
location of resources; 2) emotion focused coping strategies acting on internal states
and used for causal reinterpretation, shift of motivations, belief revision, goal recon-
sideration etc.

An alternative approach is posed by evolutionary models based on connection-
ist architectures which are introducing emotions as particular signals to be handled
within sub-symbolic processes. Busemeyer and Johnson (2004) presented a neural
network system for decision making, where the accumulation of affective evalu-
ations produced by actions execution are exploited in a wide variety of cognitive
tasks such as perception, categorization and memory processing. As reported in
chapter 2, emotions like surprise and curiosity have been variously adopted in goal
oriented systems to govern action execution: Schmidhuber (1991c, 2007) consid-
ered curiosity as sources of ‘internal motivation’ either to explore the environment
and improve relevant information either to enhance the repertoire of actions aimed
at achieving goals. Besides, recent tendencies in machine learning are exploiting
anticipatory and intrinsic rewards (Singh et al., 2005), in order to allow the system
to adapt to circumstances and particular contexts, regulate the trade-off between
exploration and exploitation, proactively explore and learn more efficiently. Ahn
and Picard (2006) proposed a cognitive system with affective and anticipatory abili-
ties, modeled by positive and negative appraisal of expectations and where extrinsic
rewards (rising from external goal, or costs) are integrated with intrinsic rewards
(rising from internal circuits, emotions and motivations).

7.3 Expectations and Surprise

7.3.1 A Typology of Expectations and Predictions

The expectation system of a cognitive agent is an amazingly complex system whose
operating characteristics vary enormously across time and specificity, at both con-
scious and unconscious, and learned and innate levels. Indeed, the crucial feature of
cognitive agents is their being pro-active not only reactive due to their anticipatory
representations. Cognitive agents have the ability to deal with the future by mental
representations or specific forms of learning. For guiding and orienting the action
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a representation of the future and more precisely a representation of future effects
and of intermediate results of the action is needed. To have a mind means to have
anticipatory representations, i.e., predictions and goals; not just perception, beliefs,
memory.3

Lorini and Castelfranchi (2007) have identified a rich typology of expectations.
The typology is the one given in figure 7.3.1. The most general distinction is be-
tween low-level and high-level expectations and predictions. Low-level expectations
and predictions correspond to sensory motor expectations and predictions based on
some form of statistical learning on frequency and regular sequences, on judgment
of normality in direct perceptual experience, on the strength of associative links
and on the probability of activation (Kahneman and Miller, 1986). Low-level ex-
pectations and predictions play a prominent role in automatic behavior (Norman
and Shallice, 1986) where primitive forms of anticipation are involved (Stolzmann,
2000). On the other hand, high-level expectations and predictions have many differ-
ent sources: from analogy (“The first time he was very elegant, I think that he will be
well dressed”) and, in general, inferences and reasoning (“He is Italian thus he will
love pasta”), to natural laws, and - in social domain - to norms, roles, conventions,
habits, scripts (“He will not do so; here it is prohibited”), or to Theory of Mind (“He
likes Mary, so he will invite her for a dinner; He decided to go in vacation, so he will
not be here on Monday”). These forms of high-level expectations and predictions
are involved in intentional behavior and deliberative activity.

The category including high-level expectations and predictions is then refined by
the identification of specific sub-species of anticipatory mental states. Scrutinized
expectations and predictions are distinguished from expectations and predictions in
background (passive expectations) which operate at an unconscious and automatic
level (Kahneman and Tversky, 1982). On the one hand, scrutinized expectations
and predictions occupy consciousness and draw on the limited capacity of attention.
They are coupled with the current intentions of the agent. For example, while trying
to find a cheap flight from Rome to London in the Ryanair website and having the
intention to do this, an agent consciously expects to find a cheap flight from Rome to
London. Scrutinized expectations and predictions are endogenous anticipatory ex-
plicit representation of the next input which have to be matched with the incoming
data. On the other hand, expectations and predictions in background are available at
a mere automatic and effortless level. Either they can be the product of priming4 or
they are part of a presupposed mental framework supporting the agent’s scrutinized
expectations and predictions. There are expectations and predictions constituting
the presupposed mental framework of the agent which have the form of conditional

3 As previous works have already clarified (Miceli and Castelfranchi, 2002; Castelfranchi et al.,
2003) expectations have to be distinguished from mere predictions (i.e. beliefs about the future).
Expectations are the functional coupling of a belief on the future with a goal concerning the con-
tents of that belief. The presence/absence of this motivational component marks the distinction
between mere predictions and proper expectations.
4 Several empirical evidences exist showing that, in being active and available at an automatic
and effortless level, background (passive) expectations can affect subject’s performances and judg-
ments and can conflict with conscious (scrutinized) expectations (see for example (Sommer et al.,
1998)).
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Fig. 7.1 Typology of expectations and predictions

expectations and predictions.5 They encode a causal knowledge used by the agent
for interpreting the context where his action and perception are situated. For exam-
ple, while trying to find a cheap flight from Rome to London in the Ryanair website
and having the intention to do this, an agent consciously expects to find some cheap
flight from Rome to London (i.e. the agent has a scrutinized expectation to find some
cheap flight from Rome to London). Such a scrutinized expectation is supported by
a background belief of the form “I believe that I have entered into the Ryanair web-
site” and by a conditional expectation in background of the form “I expect that if
someone enters into the Ryanair website then he will find some cheap flight from
Rome to London”.6

Scrutinized expectations and predictions, and expectations and predictions in
background are included in the more general category of explicit expectations and
predictions, that is, all those expectations and predictions which are available to
the agent either at a conscious level or at an automatic and effortless level. Ex-
plicit expectations and predictions are members of the agent’s explicit knowledge

5 The notions of conditional expectation and conditional belief have been extensively analyzed in
analytical philosophy and AI (Boutilier, 1996; Rott, 1989; Stalnaker, 1981).
6 These conditional expectations and predictions are generated on the basis of the agent’s knowl-
edge encoded in scripts and frames (Schank and Abelson, 1977). For example, the agent’s condi-
tional expectation “I expect that if someone enters into the Ryanair website then he will find some
cheap flight from Rome to London” is generated from the agent’s script of the Ryanair website.
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base including also explicit beliefs about the present, explicit beliefs about the past,
explicit assumptions, etc... Finally, explicit expectations and predictions are distin-
guished from implicit expectations and predictions, that is all those potential expec-
tations and predictions that can be inferred from the agent’s explicit knowledge base
(Ortony and Partridge, 1987; Levesque, 1984).

7.3.2 From the Typology of Expectations to the Typology of
Surprise

Surprise is perhaps the most primitive form of emotion and is tightly related with
expectations and predictions. In fact, surprise is the emotional response which is
associated with the invalidation of predictions and expectations. Surprise is a felt
signal (Reisenzein, 2000) which provokes an immediate reaction/response of alert
and arousal due to an inconsistency (discrepancy, mismatch, non-assimilation, lack
of integration) between an incoming input and our predictions and expectations.
It invokes and mobilizes resources at disposal of an activity for a better epistemic
processing of this strange information (attention, search, belief revision, etc...), but
also for coping with the potential threat (Lazarus, 1991). Surprise is aimed at solving
the inconsistency and at preventing possible dangers (the reason for the alarm) due
to a lack of predictability or to a wrong anticipation.

In agreement with the model of cognitive surprise we developed in (Lorini and
Castelfranchi, 2007, 2006), we conceive surprise as an expectation-based cognitive
phenomenon7 playing a fundamental role in expectation dynamics. On the basis
of the typology of expectations and predictions sketched in the previous section
7.3.1, a related typology of surprise can be given. A specific type of surprise can be
associated to each type of expectation and prediction and different levels of surprise
can be defined. Our typology of surprise is the one sketched in figure 7.3.2.

Low-level surprise is conceived here as the most peripheral form of surprise,
due to the perceptual mismatch between what the agent sees and his low level (i.e.
sensory-motor) expectations. This forms of surprise is distinguished from forms of
high-level surprise due to symbolic representations of expected events, and to the
process of information integration with previous long-term knowledge and to the
explanation of the perceived data (Meyer et al., 1997). Hence, several sub-species
of high-level surprise are defined. Mismatch-based surprise is due to a recognized
inconsistency between a perceived fact and a scrutinized expectation. An agent can
have an anticipatory conscious representation of the next input (i.e. a scrutinized
expectation) and can try to match the incoming data against it. If there is a mismatch
between the two representations, then surprise will arise. For example, while trying
to find a cheap flight from Rome to London in the Ryanair website and consciously
expecting to find some cheap flight from Rome to London, an agent might discover
that there are not cheap flight from Rome to London. From the mismatch between
the agent’s expectation and the incoming input surprise will arise.

7 See also (Casati and Pasquinelli, 2006) for an expectation-based model of surprise.
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Fig. 7.2 Typology of surprise

Besides, we call astonishments those forms of surprise due to the implausibility and
unexpectedness of the new input. When an agent is astonished about something, he
cannot believe what he sees and this presupposes that he is trying to believe, he is
trying to find an explanation for what he sees, but he is suspended. Astonishment is
due to a difficulty, to a delay due to this process of integration, of accounting for,
which in this case is not automatic and fast, not immediately successful. We cannot
in fact believe something just putting it in our belief base; we must check about
consistency (especially if there are reasons for suspecting some inconsistency). If
the actual input generates an intense astonishment then it means that the input is
unexpected and rather unpredictable from the agent’s expectations and predictions
in background or from the agent implicit expectations and predictions. For example,
after having typed the Ryanair website’s address “www.ryanair.com” in his browser
in order to connect to the Ryanair website, a message could appear saying “Ryanair
website has been definitively closed since the company went bankrupt”. This will in-
duce an intense astonishment in the agent since either, from his implicit knowledge,
the agent is able to infer that the fact “Ryanair went bankrupt” is quite implausible
or he presupposes that “Ryanair did not go bankrupt and the Ryanair website is still
accessible” (given that he intends to enter into the Ryanair website).

Finally, we call disorientation the form of surprise due to the the collapsing of
the presupposed mental framework of the agent. More precisely, disorientation is
due to the invalidation of conditional expectations and predictions constituting the
presupposed mental framework of the agent. As noted in the previous section 7.3.1,
such conditional expectations and predictions are used by the agent for categorizing
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the whole situation or context in which his action and perception are situated. When
one of those conditional expectations and predictions is invalidated, the agent has to
reinterpret the entire situation and context. He is not just surprised but disoriented.
For example, when entering in a restaurant a person assumes to be entered in a
restaurant, and assumes to be entered in a normal restaurant with no elephants, no
lions or other strange things. Indeed, a normal person has a conditional expectation
of the form “I expect that if I enter into a restaurant then I will not see a lion”.
If the person enters into a restaurant and sees that there is a lion, then he will be
completely disoriented because of the invalidation of his conditional expectation
which will lead him to reconsider the mental framework used for interpreting the
whole situation.

7.3.3 Roles of Surprise in Cognitive Processing

As discussed in section 7.3.1, a cognitive agent has sensory-motor expectations
(low-level expectations) which play a prominent role in automatic and routinized
behavior. Given a certain stimulus S, the agent selects a certain response A with
the sensory-motor expectation of the reward he will obtain by doing A. An unex-
pected (positive or negative) reward of the performed action A can be responsible
for generating low-level surprise (as defined in section 7.3.2) and for adjusting re-
ward predictions. This has been confirmed by empirical researches. In (Schultz,
1998) the neural correlates of such surprise mechanisms are studied. The advanced
hypothesis is that dopamine could function as a signal of unpredictability of actions
and then be required for learning novel actions. These neural mechanisms on which
surprise is based signal error in reward prediction and can be used for learning the
value, positive or negative, of an agent’s actions. Surprise also plays a crucial role
in neuro-computational models of action control. According to these models, after
a system has selected some motor programs for achieving some desired state S, he
anticipates the effects of the selected motor programs (motor prediction), that is, he
forms some sensory-motor expectations of the next input. If the some sensory-motor
expectations is invalidated by the perceived input, surprise can intervene during per-
formance and be responsible for a correction of the ongoing action. For instance,
suppose that an agent is trying to grasp a moving object in front of him. Appropriate
motor programs are selected (e.g. moving the hand with a certain angle, direction,
velocity; bending the elbow in certain way; etc.) and the effects of selected motor
programs are anticipated in such a way that the body can be adjusted in order to
succeed in grasping the object. For example, while trying to grasp the object the
agent has sensory-motor expectations of the spatial position PosExpected of the ob-
ject in the next future. If the perceived position PosPerceived of the object turns out to
be different from the expected position PosExpected of the object, surprise will arise.
Such a surprise is responsible for a correction of the ongoing action of grasping the
object (e.g. after being surprised the agent changes the direction of the movement).

A further functional role ascribed to surprise is its function for a shift of attention
(Botelho and Coelho, 1997; Baldi, 2004; Itti and Baldi, 2006). This is part of the im-
mediate response and short-term function of surprise. The felt feedback of surprise
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(the feeling of surprise) is responsible for redirecting attention towards unexpected
stimuli, and for concentrating cognitive resources on them and for interpreting them.
In this sense surprise is crucial for learning in cognitive systems (Berlyne, 1960).
In the reinforcement learning community in the last few years, several authors have
been devoted to encompass traditional reinforcement learning models in order to
endow cognitive systems with intrinsic motivations such as curiosity and surprise
(Singh et al., 2005; Schmidhuber, 1991c). Curious agents have been designed in
such a way that they shift their attention towards salient stimuli and initiate an ex-
ploration those parts of the environment which turn out to be novel. This line of
research in the RL community takes inspiration from some recent studies in neu-
roscience (Dayan and Balleine, 2002; Kakade and Dayan, 2002) where it has been
shown that dopamine also plays a critical role in the intrinsic motivational control
of behaviors associated with novelty and exploration. For instance, salient, surpris-
ing sensory stimuli inspire the same sort of phasic activity of dopamine cells as
unpredicted rewards.

Related to the previous roles of surprise, is the function of surprise for a shift
from an automatic (reactive) level of performance to a deliberate level (Ortony et al.,
2005). In fact, when an agent is engaged in an automatic and routinized activity, the
violation of his sensory-motor expectations of the effects of his actions or the viola-
tions of his reward predictions can be responsible for a shift to the deliberate level
consisting of a new planning process. For example, while trying to grasp an object
an agent has a sensory-motor expectation TempExpected of the surface temperature
of the object. In the normal case the agent expects that the object will not be red-
hot. If the agent’s sensory-motor expectation is violated by the input TempPerceived

(e.g. the agent touches a red-hot object), low-level surprise arises and the agent’s
behavior might be interrupted. After this the agent might be deliberately replan and
choose a different course of action (e.g. it might decide to grasp the red-hot object
with tongs).

The crucial role of surprise in higher forms of learning has been stressed in cog-
nitive and experimental psychology. With higher forms of learning we mean those
forms of learning which consist in a revision, update, change of high-level predic-
tions, expectations, beliefs of a cognitive agent (as defined in section 7.3.1). As some
psychologists have stressed (Meyer et al., 1997) surprise often culminates in a pro-
cess of belief and expectation change. More precisely, surprise is often a signal and
causal precursor of a process of belief reconsideration. In fact, when agent’s high-
level expectation is violated, high-level surprise (as defined in section 7.3.2) arises
and the agent becomes aware of the fact that he has wrong knowledge of the envi-
ronment. This is the preliminary step towards a revision of the agent’s preexistent
high-level predictions, expectations and beliefs.

In what follows we refer to autonomous and proactive software agents, in par-
ticular we refer to a strong notion of agency, dealing with a special kind of Goal-
Directed entities using an explicit internal representation for their goals (purposes)
and their beliefs (knowledge). Such a kind of cognitive systems is assumed to create,
update and manipulate a symbolic representation of the world through mental states.
Differently from adaptive and merely goal-oriented agents who try to adjust their
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epistemic representations to the world in order to make them as accurate as possi-
ble, a true goal-directed agent modify the external world, through its activities and
according to his endogenous representation, trying to make it as close as possible to
the desired states. Whereas the assessment of the belief base determines agent’s in-
ternal states, the internal goal representation makes it possible to determine the ‘end
state’ of a given activity, as far as to deliberate between concurrent goals and decide
the one to adopt. Typically, goal directed agents use a reasoning process, including
a deliberation engine to resolve and select the goal to adopt among the applicable
ones.

The next two section are devoted to discuss a computational model of surprise we
developed by Lorini and Piunti (2007) and Piunti et al. (2007b,d). In such models
we devise out some of the functional roles that surprise and expectation invalidation
emotions play with respect to anticipatory abilities.

7.3.3.1 Surprise-Based Belief Update: A Computational Model

In Lorini and Piunti (2007) the role of high-level surprise in belief change is inves-
tigated and a computational model of surprise-based belief change is developed. In
such a computational model - which takes inspiration from the general theory of
surprise presented in Lorini and Castelfranchi (2007) and briefly described in the
previous section 7.3.2 -, the notion of mismatch-based surprised is operationalized.
Mismatch-based surprised is conceived as a filter mechanism which is responsible:
1) for signaling the inconsistency between beliefs and an incoming input which
is relevant with respect to the current task; 2) for the revision of beliefs and ex-
pectations on the basis of the incoming relevant information. The computational
model consists in the operationalization of two general hypothesis. On one hand, it
is supposed that at each moment an agent is focused and allocates his attention on
a particular task that he is trying to solve. That is, the agent has a certain number
of scrutinized expectations and, as noted in section 7.3.1, each scrutinized expecta-
tion is coupled with an intention representing the pragmatic solution that the agent
has selected in order to accomplish the task (Bratman, 1987)8. Hence, the agent ig-
nores all incoming input which are not relevant with respect to the current task on
which he is focused and only considers those information which are relevant. On
the other hand, it is supposed that if a relevant input mismatches with a scrutinized
expectation of the agent, surprise arises. The surprise reaction is a causal precursor
of a belief update process. In fact, a surprise with a certain intensity relative to the
incoming relevant input “signals” to the agent that things are not going as expected
and that beliefs must be reconsidered. The surprise-based mechanism of belief up-
date is implemented in a belie f −desire− intention (BDI) architecture (Wooldridge,
2002; Rao and Georgeff, 1992) and the performances of a standard BDI agent and
of a BDI agent endowed with a surprise-based filter of belief change (called BDIS
agent) are compared. The control loop of the standard BDI agent is described in the

8 A bayesian network is also used to encode the agent’s causal knowledge of external environ-
ment and to define those conditional expectations and predictions that, as argued in section 7.3.1,
constitutes the presupposed mental framework of the agent.
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BDI S agent control loop BDI agent control loop

1. B := B0; 1. B := B0;
2. I := I0; 2. I := I0;
3. while (true) do 3. while (true) do
4. get new percept Γ ; 4. get new percept Γ ;
5. if S(I,Γ ,B) > ∆ then 5. B := bu(Γ ,B);
6. B := bu∗(Γ ,B, I); 6. D := options(B, I);
7. end-if 7. I := f ilter(B,D, I);
8. D := options(B, I); 8. π := plan(B, I);
9. I := f ilter(B,D, I); 9. execute(π);
10. π := plan(B, I); 10. end-while
11. execute(π);
12. end-while

Table 7.1 The two typologies of agents

right column of Table 1, whilst the control loop of the BDIS agent is described in
the left column of Table 1. The formal description of the control loop of the stan-
dard BDI agent is similar to the one given in Wooldridge (2002); Rao and Georgeff
(1992). In lines 1-2 the beliefs (beliefs about the present, as well as predictions) and
intentions of the agent are initialized. The main control loop is in lines 3-10. In lines
4-5 the agent perceives some new facts Γ and updates his beliefs according to a
function bu. In line 6 the agent generates new desires by exploiting his means-end
rules. In line 7 he deliberates over the new generated desires and his current inten-
tions according to the function f ilter.9 Finally, in lines 8-9 the agent generates a
plan for achieving his intentions by exploiting his planning rules and he executes
an action of the current plan. The main difference between the standard BDI agent
and the BDIS agent is the belief update part in the control loop. It is supposed that a
process of belief update defined by the function bu∗ is triggered in the BDIS agent
only if the degree of mismatch (i.e. S(I,Γ ,B)) between the incoming input Γ and
the scrutinized expectation of the agent associated with an intention in I is higher
than a threshold ∆ (line 5 in the control loop of the BDIS agent). In this sense, the
BDIS is endowed with a cognitive mechanism of surprise-based belief change. In
fact, this mechanism filters out all perceived facts that are irrelevant with respect to
the current intentions and with respect to the current scrutinized expectations. Thus,
the BDIS agent only updates his beliefs by inputs which are surprising and relevant
with respect to his current intentions and scrutinized expectations. Differently, at
each round the standard BDI agent updates his beliefs indiscriminately: for any fact
he perceives, he updates his beliefs whether the perceived fact is relevant or not.

9 Space restrictions prevent a formal description of the function f ilter here (see Wooldridge (2002)
for a detailed analysis). Only note that this function is responsible for updating the agent’s inten-
tions with his previous intentions and current beliefs and desires (i.e. f ilter : BEL×2INT ×2DES �→
2INT ).
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7.4 Expectations and Emotions for Goal-Directed
Agents

The most recognized approach in design of computational systems for affective
agents is inspired by Appraisal Theory of emotions (see Arnold (1960); Frijda
(1987); Lazarus (1991), among others). According to this model, appraisal pro-
cesses are performed by agents to assess the relationship with their environment
and external events (Elliot, 1992; Moffat and Frijda, 1995; Gratch and Marsella,
2006). In particular, appraisal allow agents to characterize the significance of events
from a subjective perspective and can be used to respond (coping) to events by af-
fecting agent internal states (i.e. knowledge, desires, intentions). In so doing agents
mediate, with affective states, their interaction with the environment10. Whereas
appraisal processes are generally implemented by assessing specific appraisal vari-
ables and then identifying causal chains that, from past events, lead to the current
state, we here propose a different approach, embedding cognitive appraisal directly
within agent reasoning. As in Piunti et al. (2007b,d), we identify two integrated
levels of reasoning, involving cognitive, slow deliberative processes as well as fast
automatic and associative ones. Both levels integrate various mechanisms required
to manage expectations, used to assess alternatives and choices, and to direct cog-
nitive resources towards anticipated events. In more detail, we include high level,
active and scrutinized expectations and background, passive expectations (See Fig.
7.1). At the higher level we deal with expectations modulating decisions and thus
goal deliberation: we include in the reasoning process a quantitative influence on the
terms given by the expected utilities used for arbitrating between alternative courses
of actions. These influences can be adjusted on the basis of past practices and enable
agent to learn from experiences. Besides, in order to enhance agent’s adaptiveness,
we model situated, low level expectations to elicit interrupts of deliberative pro-
cesses in order to control unexpected events requiring services and thus reconsider
the course of agent activities. Typically, these particular kind of reasoning is not part
of the specification of an agent in his purposive behavior, rather can be let to emerge
on the basis of context information as a result of the interactions in the environment.
This approach is intended at: 1) Exerting a top-down modulation of emotional rea-
soning as a result of deliberative process and adaptive responses to relevant events
and 2) Integrating adaptiveness in decision making along with expectations and their
causal relation with the subjective appraisal/evaluation of events.

7.4.1 Expectations and Decision Making

Goal directed systems refer to a strong notion of agency, where internal goal rep-
resentation makes it possible to deliberate between concurrent goals and decide the
one to adopt (Castelfranchi, 1998). In so doing, cognitive systems are able to cre-
ate, update, manipulate a symbolic representation the world through mental states

10 Lazarus indicated this particular process as a reflexive re-assessment of the internal state under
context awareness rather than a explicitly deliberated process.
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Fig. 7.3 Given a terminal goal, Expectation Driven Deliberation compares Subjective Expected
Utilities to choose the most promising course of actions

(i.e. Beliefs, Goals). This approach is reflected by the wide adopted Belief-Desire-
Intentions (BDI) model of agency (Rao and Georgeff, 1995; Georgeff et al., 1998),
according to which an action is performed when the agent has an intention to achieve
a given goal, and some beliefs indicating that the action helps in achieving that goal.
Our model builds, on top of a BDI engine, an expectation-driven decision making,
thus combining deliberative, logical aspects of a BDI model with more quantitative,
numerical aspects of decision theory. To allow agents to take decisions based on
scrutinized predictions and expectations we model a long term memory entertain-
ing endogenous anticipatory representations. Each agent’s (sub)goal is given along
with the representation of its activation formulae (typically first-order belief for-
mulae (Thangarajah et al., 2002)) and a network of inhibition links (indicating if a
given goal has the priority on another goal and under which conditions this prior-
ity is applicable). Filtering can be managed through a dynamic arbitration network,
providing disambiguation between the precondition rules and the resolution of the
relative dependencies (inhibition links) between the concurrent goals. The BDI de-
liberation engine react to changes in the belief base (i.e. internal events thrown by a
belief update) and use the current internal state to filter out enabling conditions for
arbitrating the goal adoption (see Braubach et al. (2004) for more details). Imagine
an agent being engaged in a foraging task: in normal conditions, the terminal goal is
to look for valuables moving to a series of rooms towards some Location of Interest
(LOI). Expectation-driven deliberation lets the agent to decide on which LOI to look
for, considering how the various alternatives are ‘promising’ (Fig. 7.3).

As for the decision theoretic paradigm of ‘rationality’ (Savage, 1954; Doyle,
1992), an artificial agent may behave in order to maximize the expected utility,
given multiplying utilities (desirability) and probabilities (likelihood). In our model
this strategy is delivered at a meta-level reasoning, typically when the agent has to
select between alternatives to achieve mutually exclusive sub-goals. Expectations
are built upon two independent quantitative dimensions: Belief strength, as a degree
of subjective certainty placed in terms of likelihood (the agent is more or less certain
about their content) and Goal value, a subjective importance strictly dependent on
desirability of the goal state and the related motivating forces, but also on context
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conditions and mental attitudes (Miceli and Castelfranchi, 2002; Castelfranchi et al.,
2003; Castelfranchi, 2005).

Desirability is assessed in terms of utilities, and is coupled to rewards obtained
upon goal completion: it is calculated according to the extent to which an intention
(i.e. a given sequence of actions) has fulfilled a certain goal. This makes it possible
to endow expectations with their valence: expectations can be considered positive
(or negative) according to their contribution (or determent) to the ongoing intentions
and mental states (e.g. Goals, Beliefs).

Likelihood are subjectively assessed as predictions. They are assigned through
a forward model, able to quantitatively assess the subjective likelihood of a certain
future state in domain of probability11.

7.4.1.1 Emotions Modulating High Level Expectations

The fact that emotions influence decisions is widely acknowledged. A paradigmatic
example is offered by neuropsychological studies on the role of emotions in decision
making (Bechara et al., 1997). The model proposed by Damasio (1994) suggested
the introduction of explicit somatic markers creating a sort of veto in the branching
tree of alternatives, thus reducing the fan out of a possible decision. Otherwise, an
emotion can inform cognition by affecting the desirability and the likelihood of an
outcome. Early models indicated for emotions an additional motivation regulating
utilities. Lowenstein and Lerner (2003) observed important distances between clas-
sical decision theory and emotional decision making. They explicitly introduced an
anticipatory effects of emotion in regulating decisions. A similar solution has been
formally proposed by Gmytrasiewicz and Lisetti (2000), while Busemeyer et al.
(2003) formalized how needs change over time under the pressure of external ‘stim-
ulation’ and internal ‘deprivation’.

As far as our computational model concerned, we based emotion affecting deci-
sion through feedback signals of appraised mismatches upon purposive action com-
pletion. Given a scrutinized expectation upon a possible reward, our agents can ap-
praise their experiences matching the expected utility and the effective achieved re-
ward. While Active perception (see section 7.3.3.1) is used to update the knowledge
model used for determining probabilities of future events and predictions, feedback
of mismatches between expectations and experienced outcomes are used to expe-
rience emotions and adjust either utilities and predictions. As described in section
7.3.2, recognized inconsistencies between a perceived fact and a scrutinized expec-
tation are at the basis of mismatch-based surprise. On the basis of a monitored signal
(i.e. obtained reward) and a given expectation (i.e. expected reward), we recognized
the following six cases of appraisal :

1. Positive increase (S+): the agent is expecting a punishment but receives a re-
ward. The achieved reward is stronger than the one expected. Can be related to
to excitement or positive surprise.

11 In the actual implementation, we are testing different mechanisms for unsupervised learning to
determine conditional probabilities of future events given a sufficiently wide open knowledge base
(i.e. EM algorithms for Bayesian networks (Dempster et al., 1977)).
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2. Negative increase (S−): the agent is expecting a reward but receives a punish-
ment. The achieved punishment is stronger than the one expected. Can be related
to distress or negative surprise.

3. Positive reduction ($+): the agent achieve less reward than the one expected. Can
be related to disappointment.

4. Negative reduction ($−): the agent achieve less punishment than expected. Can
be related to relief.

5. No Surprise (NS): the reward matches the expectation and is exactly the one
expected.

6. Surprise due to ignorance (IS): the reward is not deducible from prior knowledge
due to lack of experiences, not mismatch-based surprise

Once appraised, agent can use these feelings to update his expectations and thus to
give more or less preference to the related alternatives, i.e. deciding towards which
course of action to be committed in the next future. The experienced mismatch (sur-
prise) enhances the importance of a certain goal Gi, hence the agent is biased to
believe to fulfill more value from Gi achievement. We here have the expectation of a
certain event (positive or negative, depending on its accordance with ongoing goals)
that is eliciting an affective response. Therefore there is an expectation inducing
an affective bias by which the agent introduces in decision making an Expectation-
based emotion providing an intrinsic anticipatory effect12. Thus the decision, and the
related goal adoption, is ruled on the basis of anticipated states (high level expec-
tations) relying on the likelihood of the outcome (prediction) and on its desirability
(goal importance). We defined Affective Expected Utilities (AEU) in terms of:

AEU(Gi) = ∑
a jεPlan(Gi)

[Ab ×U(OGi)]×P(Oa j |a j) (7.1)

where Gi is the ith goal to adopt between candidates, OGi is its related outcome,
U(OGi) is the subjective utility of that outcome, a j the jth action of the plan triggered
by Gi and P(Oa j |a j) is the probability of that outcome, given that the jth action of
the plan will have the proper Oa j outcome.

Respect to the subjective expected utility originally proposed given
in Savage (1954), we introduce Ab on the basis of a qualitative and a quantitative
appraisal of the experienced mismatch. Differently from Damasio (1994) somatic
marker hypotheses, Ab gives an additional, quantitative reinforcement into the de-
liberation process and further modulates the expected utility in affective terms. The
branching factor of a decision is then re-modulated, whereas the alternatives acquire
different weights due to appraised expectations. In particular, the positive increase
(S+) and the negative reduction ($−) of the monitored signal provide a positive
indication about the progression of the goal value. Hence, when associated with a
specific decision alternative, they present a positive feeling towards the related out-
come. On the contrary, the negative increase (S−) and the positive reduction ($+)

12 Notice that differently from cognitive appraisal where a possibly updated belief induces an
emotion (Lazarus, 1991), here the appraisal is projected to future events (Castelfranchi and Miceli,
ress).
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cause the agent to have a negative feeling towards that choice, thus inhibiting its
value. This is implemented by reinforcing the utility of a choice with the additional
factor, in case of a positive feeling, and diminishing it in the case of a negative
feeling. Ab is positive for positive feelings and negative for negative ones:

Ab(Gi) =

⎧⎨
⎩

0.0 if Es(Gi) is in {NS, IS}
(γ+)∗Er(Gi) if Es(Gi) is a pos. feeling ∈{S+,$−}
(γ−)∗Er(Gi) if Es(Gi) is a neg. feeling ∈ {S−,$+}

where Es(Gi) comes from the last appraised mismatch on Gi’s reward, Er(Gi) is the
distance between expected reward and sensed reward, γ+ and γ− are discount factors
(with γ+ � γ−).

A number of relevant remarks are worth making in this expectation driven delib-
erative process. First of all, the high level expectation and its invalidation (mismatch)
play a pivotal role for affective states (either for the negative ones: disappointment,
negative surprise either for the positive ones: relief, positive surprise). In fact, these
emotions can’t be elicited without anticipatory states. Mere goal fulfillment or frus-
tration, if devoid of any specific mental state can elicit some emotion (i.e. sadness,
joy). But no one can feel real cognitive relief (and excitement) unless a given pre-
diction and concern with some uncertain goal, threaten to not come true. The same
for disappointment and frustration, that can proper arise only if the goal importance
is accompanied by a more or less certain prediction about its fulfillment, and this
prediction has been invalidated. Cognitive Expectations emerges from the contem-
porary presence of predictions (beliefs on the future) and Goals (ongoing desires).
Finally we assumed the intensity of the Ab as a function of its components: a) the
more (subjectively) certain the prediction, the more intense the Ab and b) the more
(subjectively) important (desirable) the goal, the more intense the Ab.

It is worth remarking further relations between decisions and emotions. For in-
stance, considering emotions arising from counterfactual analysis of lost chances
and alternative courses of actions leads to the further modulatory contribute of ‘re-
gret’ (Gilovich and Medvec, 1994; Coricelli et al., 2007). As a further step one may
involve in decisions not only the expectations about a given outcome, but also the
associated pre-felt emotion. By arising from evaluating future consequences, ex-
pected emotions have been supposed to affect the terms of a decision (Lowenstein
and Lerner, 2003; Castelfranchi and Miceli, ress). An expected emotion may in-
duce a further change in agent goal ranking, whereas positive or negative expected
emotions may induce a goal or reinforce its value (i.e. reinforcing importance for
outcomes holding to positive emotions or inhibiting outcomes referable to negative
ones). When the expected states also coincide with an expected emotion the agent
is leaning to as-if reasoning. This would be possible for an agent which, by antici-
pating some future course of action, is also likely to anticipate that he would feel a
given emotion.
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7.4.2 Situated Agents and Affective States

A central claim of appraisal theory (Lazarus, 1991) is that emotions are associated
with patterns of subjective judgment that characterize the personal significance of
external events (e.g., was the event expected in terms of prior beliefs? is the event
congruent with adopted goals?; is there the power to alter the consequences of this
event?). For instance, coping strategies elicited by surprise can be modeled as a
momentary interruption of deliberative and practical reasoning processes, e.g. di-
verting attention to past episodes or focusing sensors and effectors to a restricted
area. Therefore, appraised events and elicited emotions can be used to activate
background expectations dormant in agent’s mind. The agent is activating emo-
tions based expectations: affective states (emotions) have the role to activate mental
states (expectations). Besides, events can be compared with agent goals and endoge-
nously valued as positive (indicating that some event establishes the preconditions
for achieving goals or create a new opportunity) or negative (some event represent a
threat or thwart agent current goals). Here we are in the domain of premonitory and
preparatory emotions (Castelfranchi and Miceli, ress), whose function is to provide
some insight for inferring cognitive expectations signalling the need of behavioral
changes.

Perceptive activities for situated agents require, at any instant of time, agent to
sense context information and so have an up to date knowledge of what is happening
in environment. As placed in Piunti et al. (2007c), perception and filtering are the
epistemic processes responsible to store surprising events adding items to a Situ-
ated Associative Memory (SAM). As described in section 7.3.2, in this case surprise
arises when the agent relieves a perceptual mismatch and then is used to activate
background, passive expectations. The idea is to store, for each of these surpris-
ing events, informational reports in an associative memory. These reports contain
descriptions of a defined set of situated properties: they have a symbolic represen-
tation including time-stamp, positive or negative valence of the originating event,
location where the event has been detected and other specialized fields13:

evItem { valence: enum value="pos/neg"
time-stamp: class="Time"
location: class="Location"
helps: class="Goal"
thwarts: class="Goal"

}

Once events are translated to their symbolic representation and stored in the SAM,
they can be manipulated as percepts14. Henceforth, they can be exploited as a ‘fast’
source of information to adapt the behavior in the near future and anticipate world

13 In the case of the scenario described in Piunti et al. (2007c), we distinguished negative events as
harmful entities, fire threats, and positive events as food objects, valuables and LOI discovering.
14 Perceptual items have a propositional content but a different nature respect to the beliefs. They
are vague beliefs, only describing a situated event but not still adequate to define a causal envi-
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changes. The intuition behind the mechanisms is provided by the well known princi-
ple of spatial and temporal locality, according to which one may assess that recently
cached items of a certain class are likely to be retrieved in the near future. The
amount of item locally present in the SAM can be used as an indication to infer la-
tent, background expectations about the local context. It is worth pointing out that,
once appreciated, these situated emotions have a mediating role between the stimuli
and the reactions. Emotions here directly interfere and inform higher agent’s reason-
ing (i.e. deliberation, intention reconsideration), in particular they force a bottom up
interference with rationality 15. The agent is using affective states as cues to his
’unconscious’ assessment of the situation (Elster, 1996).

7.4.2.1 Functional Description

As in Schank and Abelson (1977), background expectations are generated on the
basis of the agent’s states and encoded in scripts and frames. This give to passive
expectation a weak form of representation and an emergent dynamics, ruled by the
assessment of ongoing affective states. Library of coping strategies, action alterna-
tives and resource allocation strategies have been clustered within a discrete set of
frames exploited as control states. Effects of coping are then modeled in different
temporal scale, from immediate and short term reactions, to most persistent and

Fig. 7.4 Controller for Affective States: appraised positive (p) and negative (n) events are fed to a
transition function in order to shift from different affective states.

ronmental relationship. Notice that situated percepts may hold to deceitful appearances, including
false positive or negative items (Pollock, 1997).
15 The mediating role of emotions can be explained in evolutionary terms. For instance, emotions
have a modulatory and energizing effect on behavior, that may result more or less vigorous, more
or less persistent (Dickinson and Balleine, 2002). Moreover, one may assess various stimuli to
elicit the same affective state that in turns, will trigger the behavioral response. Another important
function of emotions is for learning: they allow reinforcement since they can be pleasant or painful
and thus remain associated to a given stimulus and enable faster reactions based on past experiences
(Miceli and Castelfranchi, 2000).
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long term effects. Given in functional terms, coping strategies includes emotional
responses to overturn (in the case of negative emotions) or trigger (in the case of
positive ones) control signals to be signalled to the reasoning process.

Emotions are thus assumed to monitor and signal goal pursuit, achievement and
failure. Once an emotion has signalled the failure of a certain goal a behavioral re-
sponse is elicited, which in turn may imply the adoption of some alternative goal.
Besides, Affective States (ASs henceforth) are suitable control mechanisms for in-
tention reconsideration. Traditional reconsideration strategies indicate an agent to
abandon an intention when a related goal is achieved, when a goal become infeasi-
ble or when the agent relieve some inconsistencies between the world state and the
external conditions necessary for goal achievement. Our model allows basic emo-
tions to elicit an interruption on normal cognitive processes when unexpected events
require servicing. Once based on expectations of future states, intention reconsider-
ation becomes anticipatory and can be used to coordinate behavior with prediction
of future states.

Furthermore ASs embed a particular kind of goal activation, bypassing the un-
derlying deliberation processes normally used for practical reasoning. For example,
on the short term a AS may attempt to resign the agent to a threat by signalling to
the deliberative engine to abandon a goal (thus a related intention) that is becom-
ing inconsistent with the actual belief base or the actual environment state. On the
contrary, positive events may elicit goal activation to exploit new opportunities.

Each AS adopt a context dependent configuration of resources (i.e. vision, speed,
perception rate, belief update). Becoming aware of his context, the agent can dy-
namically adapt his control frame in order to reduce performance payoffs and avoid
wasting resources for useless activities. Control frames are characterized by the fol-
lowing tuple of dynamic values: C f = 〈En,r,Sr,s,Gas〉, En indicating the current
amount of energy, r the range of vision where sensors can retrieve data, Sr the situ-
ated perception filtering rate, s the instant speed and Gas the goal to be activated in
order to pro-actively respond to the situated events to cope16.

Each frame defines the roles that the related ASs play for situated adaptation
to contexts and environment dynamism. Imagine, in the foraging task described
above, that the environment presents some threats for agent activities (i.e. the fires,
adversary agents etc.). Once the agent has deliberated the best expected location to
explore, through the evaluation of the sub-goal’s related AEUs, it may happen the
agent registers a close series of harmful (unexpected) events, i.e. fire collisions (Fig.
7.5.A). This may elicit the negative expectation that the agent is approaching to a
dangerous area, and thus induce him to pass to a Cautious state (Fig. 7.5.B). This
negative, passive expectation causes the agent to adopt a new goal, re-allocating his
resources to cope harmful circumstances. Cautiousness causes changes both in the
long and the short term: firstly it induces arousing by modulating attentive resources
(i.e. enhancing Sr, looking ahead and augmenting r and reducing s, see Tab.7.2).
A risk avoidance goal Gas interrupts the ongoing practical action to escape from
threats and accordingly the agents arranges activities to better check the situation.

16 We assume that agents spend energy and resources according to a combination of the previous
costs (e.g. the higher the speed and perception-rate, the higher the consumed energy).
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Fig. 7.5 Intention Reconsideration upon the activation of the Cautiousness Mental State

Table 7.2 Mental States elicit the adoption of control frames for attitudes, confidences and re-
source allocation strategies

AS Mood γAS Resources
r Sr S

Default Exploitation 1.0 .33 .33 .33
Excitement Reinforcement 1.3 .275 .275 .45
Caution Prudence 0.5 .45 .45 .10
Boredom Exploitation 1.0 .33 .33 .33
Curiosity Exploration 1.0 .45 .10 .45

On the long term, cautiousness brings to a watchful mood, by reducing the self con-
fidence on beliefs (γAS), augmenting the control (e.g. enhancing perceptive iterations
Sr) and/or performing the action in a less risky way (e.g. using safest alternatives
in repertoire). Prevalence of positive surprising events induces the agent to shift to
Excitation, that on the short term is used to arouse the agent, to augment epistemic
activities and to search for those ‘good’ events. A positive surprise (i.e. valuables
discovering) may induce the agent to abandon a previous intention and to reformu-
late his behavior to exploit the new opportunity triggering a new goal Gas. On the
long term, excited agent adopt an ‘optimistic’ mood increasing the confidence (γAS)
of those unexpected, positive events17.

The lack of surprise progressively empties the SAM and reduces situated per-
ceptive activities. In the long run, it produces a special frame: Boredom. Boredom

17 Notice that, differently from Excitement emerging on appraisal of an achieved goal, Excitation
has been related to a situated positive surprise.
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indicates that the environment is almost stationary (no unexpected events are hap-
pening) and that the agent can fully exploit his purposive behavior governed by the
deliberation driven reasoning. This enhances the subjective confidence in beliefs and
in building predictions. Further persistence of boredom leads to Curiosity, a con-
trol state used to automatically arbitrate from exploitation to exploration activities.
The exploration attitude is goal driven: once the agent does not recognize relevant
events in his SAM18, he may infer the low-level expectation that the environment is
becoming more static, hence biases his activities towards actions that shows promise
to perform a better field coverage and to maintain an updated knowledge. Bypass-
ing the deliberation of practical reasoning, the curious agent pro-actively activates
the epistemic Gas of exploring new rooms, searching for new facts and events. This
has a twofold effect: on the one side it enhances territorial exploration augmenting
the chances to discover new LOIs, on the other side it improves knowledge and
maintains updated beliefs19.

Transition Function and Information Fusion. SAM’s content is constantly
monitored by an appraisal process in order balance the presence of items and thus
decide which is the AS to adopt. Passing from one state another depends on how the
events are relieved and appraised in execution time. This process can be described
through a push down automaton (Piunti et al., 2007c; Gmytrasiewicz and Lisetti,
2000). Generally the agent supervises the buffers (through a background process)
by balancing their registered contents: prevalence of negative items leads to pas-
sive expectation of undesirable states (i.e. contingencies, risks), hence to cautious
attitudes, while positive events lead to positive expectations (i.e. opportunities) and
excitement. For instance, the presence of negative items registering a close sequence
of threats and obstacles may induce the agent to infer a low expectation of further
threats and risks, thus to pass to a cautious mental state (Fig. 7.4). In more details,
the current state is inferred by the previous state and the perceived input by a tran-
sition function AsTrans : AS× IN� −→ AS, where AS is the set of definite affective
states and IN� the input events stored in the (possibly empty) SAM. AsTrans realize
an information fusion within the symbolic items. Notice that the presence of items
of different nature may elicit inconsistencies to be resolved (i.e. presence of ele-
ments of different meaning as, for instance, interleaved sequences of positive and
negative events). To address this problem AsTrans uses a set of rules for combining
and aggregating the items of the same type and circumvent the inconsistencies on
the basis of the temporal sequencing given by the time stamps. As suggested by
Cholvy and Hunter (1997), the rules used to govern the fusion can be composed of
meta-level and domain specific information. For instance, a simple rule of balanc-
ing may assert to aggregate the items of a given typology, in order to circumvent
the set of lower cardinality and to take into account only the information related to

18 Heuristic thresholds define the k-length time window used for passing from Boredom to Curios-
ity.
19 The benefits of interleaving epistemic and practical activities are generally accepted in situated
cognition (Kirsh and Maglio, 1994). Different policies can be retrieved in literature to manage
exploitation Vs. exploration. Among others, Ahn and Picard (2006) proposed an affective signal to
abandon exploitation and trigger the process of exploration.
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the bigger aggregate. By balancing the presence of items of a given type, the ap-
praisal process suitably distinguishes between positive and negative expectations. A
different approach was used in Piunti et al. (2007c), where two distinct buffers are
handled to store positive and negative events and the current sate is let to emerge
on the basis of the comparison of buffers sizes (Fig. 7.4). To prevent the agent to
switch to an inconsistent state, the transition function is built to take into account a
certain grade of inertia, thus providing more robustness against occasional events,
false positive or negative items (i.e. due to noise or sensor faults etc.).

7.4.3 Confidence of Predictions and Modulation of the
Probability Function

An additional mechanism is provided to handle the effects of ASs in order to recon-
cile the deliberative level, ruling intentions, goal adoption and action information,
and the situated level, providing context information. The intuition behind this inte-
gration relies on the fact that each AS embodies a certain grade of self-confidence
(due to the ongoing mood) that can be related to the belief base. Once we detailed
beliefs with a certain strength due to uncertainty on the environment state, one may
introduce the self-confidence as a discount factor to affect the likelihood of the pre-
dictions. In so doing, agents dynamically adopt a ‘more or less confident’ capabil-
ity to build their predictions. For instance, positive moods as excitation can induce
the agent to optimistically over-estimate the probability of a certain outcome. On
the contrary, negative moods like cautiousness may introduce pessimistic under-
estimations. On these basis, respect to the one given in (7.1), the affective expected
utility results:

AEU ′(Gi) = ∑
a jεPlan(Gi)

[Ab ×U(OGi)]× [γAS ×P(Oa j |a j)] (7.2)

where γAS is associated to the ongoing mental state (Tab.7.2). By associating a given
confidence to the subjective capability to make predictions, γAS introduces a further
affective modulation on agent rationality.

7.4.4 Discussion

As showed in the previous sections, the presented architecture for gaol directed
agents introduces affective reasoning and enables different kind of anticipation
based on surprise and mismatch based emotions. We first distinguished between
long-term practical reasoning and situated reasoning, providing mechanisms for
predictions on different time scale and based either on action information either
on context information (see chapter 2). We discussed how the disambiguation of
slow, decisional processes from situated ones elicits a clear methodological sepa-
ration of concerns and may greatly assist the modeler by breaking down the work
into two separate and independent activities: while the former is defined referring
to explicitly represented mental states (related to beliefs and goal) and clearly in-
volves decisional processes, deliberation and goal arbitration, the latter is defined
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by weakest representations (percepts) and can be defined through control frames,
clustering domain dependent strategies, aggregates of heuristics and functional even
affective responses used to anticipatorily react to local events. In a second phase, we
reintegrated the two processes by taking into account the correlations and the rel-
ative interactions, enlightening how low situated reasoning can be used to inform
higher reasoning and decisional processes. To this end the contribute of Affective
States is twofold: from the one side they can relieve the deliberative and the atten-
tive processes from the burdens to process weakly relevant information in decision
processes, excluding action alternatives that are likely to be less promising or have
vanishing likelihood to be achieved. Besides, ASs provide ready to use action se-
lection and resource allocation policies that may relieve agent’s need for resource-
demanding and meta decision processes. The emergent nature of expectations and
affective states enables agent to adopt ASs as control frames, while both expecta-
tions and emotions are conveyed to inform reasoning, for redirecting resources and
adopt long term strategies once a surprising event is detected.

7.5 Conclusion

In this chapter we described some of the manifold relations between emotions and
anticipation, enlightening some of the benefits which their computational processing
can bring in a cognitive system. We mainly focused on the role of expectations, and
their related emotions (i.e. surprise, caution), identifying several functional roles
both at the level of automatic behavior (e.g. reactive behavior) where sensory-motor
predictions are involved, and at the level of deliberated behavior, where high-level
expectations, predictions and beliefs play a pivotal roles for goal oriented behavior,
knowledge inference and decision making.

Accordingly, we surveyed some of the traditional systems dealing with affective
computing. It is worth remarking that, whereas traditional models are aimed at en-
hancing agent adaptiveness to indeterministic and dynamic environments, we here
adopt a different approach, enlightening the different processes by which on the
one side emotions may produce anticipation (either effect anticipation either start
anticipation) and on the other side anticipation may produce emotions. Besides, we
introduced the motives and functional advantages in embedding emotions in reason-
ing process. In particular we envisaged those anticipatory abilities enabling agents
to experience an enlarged set of emotions, and provided them with additional cogni-
tive abilities with regards to decision making, attention and resource allocation. That
is, some kind of emotions cannot be experienced by systems devoid of anticipatory
abilities: this is the case, for instance, of relief, disappointment, surprise, caution
etc. Moreover, the capacity for anticipatory representations enable agent to process
expected emotions, hence allows forms of reasoning influenced by the anticipation
of emotions.

In order to specify our anticipation based approach to computational emotions,
we described two different goal directed systems implementing different genres of
affective reasoning. The former architecture propose a computational model for sur-
prise where the epistemic activities are governed by surprise as causal precursor of
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belief update. This allow intelligent strategy for resources allocation By balancing
Epistemic Vs. Pragmatic activity Exploitable for in information-rich environments
(i.e. information seeking agents).



Chapter 8
A Reinforcement-Learning Model of Top-Down
Attention Based on a Potential-Action Map

Dimitri Ognibene, Christian Balkenius, and Gianluca Baldassarre

8.1 Introduction

How can visual selective attention guide eye movements so as to collect informa-
tion and identify targets potentially relevant for action? Many models have been
proposed that use the statistical properties of images to create a dynamic bottom-up
saliency map used to guide saccades to potentially relevant locations. Since the con-
cept of saliency map was introduced, it has been incorporated in a large number of
models and theories (Rao and Ballard, 1995; Itti and Koch, 2001a; Rao et al., 2002;
de Brecht and Saiki, 2006; Hoffman et al., 2006; Singh et al., 2006; Walther and
Koch, 2006; Chen and Kaneko, 2007; Shi and Yang, 2007; Siagian and Itti, 2007).
Saliency maps have shown to be useful both as models of human attention and for
technical applications (Balkenius et al., 2004).

These bottom-up mechanisms have been enhanced with top-down processes in
models that learn to move the eye in search of the target on the basis of foveated ob-
jects. In many of these systems, top-down attention is guided by task-related infor-
mation that is acquired through automatic learning procedures (Dayan et al., 2000b).
For example, Schmidhuber and Huber (1991) built an artificial fovea controlled by
an adaptive neural controller. Q-learning was used in the model of Goncalves et al.
(1999) to control attention based on multimodal input and reinforcement signals.
Another model that uses reinforcement learning to control visual attention is de-
scribed by Minut and Mahadevan (2001). In this model a first component learns
by reinforcement learning to direct the gaze to relevant points in space, whereas a
second component performs a “within fixation” processing directed to analyse the
foveated space and identify targets. Reinforcement learning was also used by Shi-
bata et al. (1995) to control the movement of a visual sensor over an image. The
goal of the system was to find the optimal fixation point for object recognition. In
this model, the same neural network was used both for object recognition and to
produce the sensory motion output. Balkenius (2000) presented a model that uses
instrumental conditioning as a basis for learned saccade movements. This model
was later extended to support contextual cueing where several visual stimuli to-
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gether suggest the location of a target (Balkenius, 2003). However, this model could
only keep one potential target location active at each time.

Here we propose a novel model that improves on this type of top-down mecha-
nisms by using an eye-centred potential-action map (PAM). The PAM keeps track
of all the potential locations of targets based on the information contained in a se-
quence of fixations (cf. Chen and Kaneko, 2007). In this respect, the PAM works as a
short term memory for potential target locations. Each fixation suggests potential lo-
cations for targets or other relevant cues and the evidence for each possible location
is accumulated in the PAM. The location of the potential target locations are based
on both the identity of the currently fixated object and its spatial location (Deco and
Rolls, 2005). A shift mechanism triggered by eye movements allows the potential
target locations activated in the PAM to be always updated with respect to the lo-
cation of the current fixation (similar mechanisms might be used by real brains, cf.
Gnadt and Andersen, 1988; Dominey and Arbib, 1992; Pouget et al., 2000; Di Fer-
dinando et al., 2004; Shadmehr and Wise, 2005). Overall, the PAM makes up an
efficient mechanism for accumulating evidence for potential target locations in a
action-oriented compact format readily usable for controlling eye movements. As
we shall see, the results reported here indicate that, thanks to the PAM, the model
suitably integrates bottom-up and top-down attention mechanisms and outperforms
simpler models that only search for targets based on a single, currently foveated
object.

In contrasts to the majority of models tackling the object-localisation tasks, the
system proposed here was designed not only to find the target, but also to stay on
the target once found. This is accomplished with multiple saccades that keep the
eye’s fixation point on the target. This combines the features of the cue-target based
systems describe above and systems that are more directed toward tracking (e.g.
Shibata and Schaal, 2001; Balkenius and Johansson, 2007). The idea underlying this
functionality is that vision serves action, in particular that attentional selection is a
precursor of action and it is intimately related to it (Allport, 1990; Ballard, 1991;
Balkenius and Hulth, 1999; Castiello, 1999; Casarotti et al., 2003; Di Ferdinando
et al., 2004). In this respect, the system presented here was designed to be used
within a future architecture, which will guide a robotic arm engaged in reaching
rewarded targets in space. As previous models (Ognibene et al., 2006; Herbort et al.,
2007), within this architecture the targets of the arm’s reaching movements will
be selected on the basis of a neural competitions fuelled by the information flow
coming from perception, in a way similar to what happens in the primate brain (cf.
Cisek and Kalaska, 2005). With respect to this mechanism of action selection, the
capacity of the attentional system to keep the fixation point on the target will allow
the model to bias the competition between alternative goals of the arm’s movements
in favour of objects relevant to the system.

The rest of the paper is organised as follows. Section 8.2 will first illustrate in
detail the architecture of the architecture proposed here and the detailed functioning
and learning processes of its components, and then it will illustrate the tasks used
to train and test the system. Section 8.3 will analyse in detail the function of the
architecture’s components, in particular how the potential action map can keep a
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memory of the information returned by cues and can integrate information on the
target returned by several cues. Finally, section 8.4 will illustrate the strengths of the
architecture and the limitations of it which will be tackled in future work.

8.2 Methods

This section first presents an overview of the system and its underlying assumptions,
then explains the details of its different components and their functioning. The over-
all architecture of the system is shown in Fig. 8.1. It consists of the following parts
which are all implemented as neural networks:

• An RGB input image, which is the sensory input of the system.
• A saliency map that selects targets for eye’s movements by integrating excitatory

signals from the periphery map (bottom-up attention map), excitatory signals
from the potential action map (top-down attention map) and inhibitory signals
from the inhibition-of-return map.

• A fovea, covering the central part of the input image, which is used for recognis-
ing objects.

• A periphery map, which plays a bottom-up attention function.
• An inhibition-of-return map, which prevents the eye from looking back to already

explored locations.
• A potential action map, which is a top-down attention map that accumulates evi-

dence for different locations where the target might potentially be found.
• A reinforcement-learning actor-critic model Sutton and Barto (1998), which al-

lows the system to store knowledge on the possible (deterministic or probabilis-
tic) relative spatial relations existing between different foveated objects and the
target.

These components allow the system to explore new images on the basis of the
bottom-up attention components. This attracts the eye to high-contrast areas while
the inhibition-of-return components promote the exploration of areas with progres-
sively lower contrast. With experience, the actor-critic components learn the spatial
relations existing between the cues and the rewarded targets (Posner, 1980; Balke-
nius, 2000). While the system explores various targets, this allows the system to
accumulate evidence for different potential target locations in the potential action
map. This map plays the role of a working memory in which the identity of dif-
ferent objects explored over time can contribute with evidence for potential target
locations relative to the currently fixated positions. This can be viewed as a form of
what-where associations. Moreover, in the case of a rewarding target, the top-down
attention process can also learn to override the inhibition of return mechanism to
stay at a target one it has been localised. We now describe the functions of each of
the components in detail.
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Fig. 8.1 The architecture of the system. The dashed box represents the work space, that is, the por-
tion of environment that the eye can explore (the stimuli are presented only within the dotted-box
sub-part of the working space). The plain boxes within the working space represent the periphery
and the fovea input to the system. All other plain boxes represent different two-dimensional neural
maps. The names and size (definition) of the maps are described in the boxes. Arrows represent
information flows. Plain arrows represent one-to-one connections with unitary weight. Dashed ar-
rows represent information that triggers a (hardwired) shift of the visual information in a direction
opposite to the saccadic movement. Thick arrows represent all-to-all connections trained through
reinforcement learning. The circle represents the output unit of the evaluator of the critic in the
reinforcement learning component. “r.f” stands for “reference frame”.

8.2.1 RGB Camera Input

The camera input might be produced by a motorised pan-and-tilt camera simulating
a moving eye. Here however, we use a stationary camera image and only simulate
the eye movements. The work space that the eye can explore is an area formed by
480×640 RGB pixels. The objects relevant for the current tasks can appear in a sub-
region of this space consisting of 240× 320 pixels. Each object is a 20× 20 pixel
square uniformly coloured in either red, green or blue. The actual input to the system
consists of a 240×320 pixel simulated camera with which the system explores the
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working space. The implemented system can also operate on a real camera, but this
has not been used in the tests reported here.

All the different components of the system represent information in a eye-centred
reference frame. This important assumption is based on the idea that the brain uses
an eye-centered representation close to the sensory organs and puts off the computa-
tionally heavy remapping to motor coordinates until it is needed for motor control.
This is an idea which is gaining increasing support within the neuroscientific lit-
erature on visuo-motor transformations taking place in parietal cortex (Shadmehr
and Wise, 2005). The computational advantage of such deferred processing exploits
that representations close to the sensory organs tend to contain much information,
whereas later stages closer to the actuators use more abstract representations.

8.2.2 Saliency Map and Action Selection

A saliency map combines a number of visual feature maps into a combined map
that assigns a saliency to every location in the visual field (Itti et al., 1998). Each
feature map is typically the result of applying some simple visual operator to the
input image. For example, a feature map could consist of an activity pattern that
indicates all the vertical edges in an image. Other types of feature maps may code
for intensity, color, motion or some other visual feature. The result of summing the
different feature maps is that the saliency map will code for locations in the image
with many features. For example, a region with many edges and bright colors will
be more salient than a locations without any such features.

The idea of saliency map can be extended to include not only “bottom-up” in-
formation from feature maps, but also information from other sources. Here, the
saliency map selects saccade targets by summing the topological input signals com-
ing from three different sources (neural maps). The first source of input the periph-
ery map which detects colored objects in the scene and issues bottom-up signals
to the saliency map via topological one-to-one connections with equal fixed pos-
itive weights denoted by denoted by β . The second source is the potential action
map which implements top-down attention and activates the saliency map through
topological one-to-one connections with equal fixed positive weights denoted by τ .
The final source of input is the inhibition-of-return map which encodes the last lo-
cations visited by the eye and activates the saliency map via topological one-to-one
connections with equal fixed negative weights denoted by denoted by ι .

The choice of the saccade target is performed by selecting the position corre-
sponding to the unit with maximum activation (the “winning unit”). During train-
ing, the units of the map were added random values before computing the wining
unit. These noisy values were randomly drawn from a uniform distribution having a
range [−n,n] decreasing with time t:

n = ν ·
(

1− (t/T )2
)

(8.1)

where T is the duration of the training phase.
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This process is a computational abstraction of the competition taking place in
real brains between potential target stimuli (Koch and Ullman, 1985; Desimone and
Duncan, 1995). Such a mechanism might be neurally implemented with a map of
units having reciprocal long-range inhibitory connections and short-range excita-
tory connections (Amari, 1977; Erlhagen and Schöner, 2002). Since the more bio-
logically realistic mechanism did not show qualitatively better results we opted for
using a simple max function since it is much more computationally efficient. Note,
however, that the neural version of the saliency map might have various advantages
over the simple max function in tasks more complex that those considered here, as,
for example, it allows the system to select targets that do not lay on the vertexes
of the grid of neurons that form it and it tends to select targets located close to the
barycentre of objects.

After the winning unit is selected, the map’s units ai j are activated on the ba-
sis of a Gaussian function depending on their distance from winning unit itself. In
particular, the units have a higher activation the closer they are to the winning unit:

ai j = exp
[−d2

i j/σ2] (8.2)

where di j is the distance between the unit i j and the winning unit, and σ2 is the
standard deviation of the Gaussian. As we shall see in section 8.2.7, this Gaussian
activation is used to train the top-down attention component of the system (actor-
critic model).

8.2.3 Fovea

The input image was sub-sampled to produce three RGB maps of 2×2 pixels each
representing the component of the system capable of distinguishing between dif-
ferent objects. For simplicity, in this work uniformly coloured squares of 20× 20
pixels were used to identify different objects, but the architecture can be used with
more sophisticated object-recognition methods (e.g. as those proposed by Rao and
Ballard, 1995; Riesenhuber and Poggio, 1999). The pixels of these maps were acti-
vated with {0,1} on the basis of whether the corresponding RGB pixels of the input
image were on or off.

8.2.4 Periphery Map

The periphery map, which is incapable of discriminating between different objects,
is in charge of guiding the eye to high-contrast regions of the work space. Given the
goals of this work, the presence of a colour was sufficient as a contrast indicator,
but more sophisticated bottom-up saliency maps may replace this mechanism to
process more complex scenes (e.g., cf. Koch and Ullman, 1985; Itti et al., 1998; Itti
and Koch, 2001a). Here, the input image is used to activate a 30× 40 B/W low-
resolution periphery map. For this purpose, the activation of each element of the
map is obtained by averaging the RGB colour values in the range [0,255] of a group
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of topologically corresponding 8×8 pixels of the input image so as to obtain a gray
scale value in the range [0,1].

8.2.5 Inhibition-of-Return Map

The inhibition-of-return map works in a way analogous to what happens in real
organisms (Tipper et al., 1991; Klein, 2000), and produces an efficient exploration
of the different potential targets in a scene. This map is activated by the last visited
locations (cf. Koch and Ullman, 1985; Klein, 2000) on the basis of the fovea position
(the “eye’s position in the orbit”). After each saccade, the previous position of the
eye activates a cluster of units of the map on the basis of a Gaussian function. In
particular, each map’s unit ci j is activated as follows:

ci j = min[ci jt−1(1− ε)+ exp[−d2
i j/σ2],φ ] (8.3)

where ε is a decay coefficient, di j is the distance between the unit i j and the unit
corresponding to the foveated point, σ2 is the standard deviation of the Guassian,
φ is the maximum activation of the map’s units. Note that the bound imposed on
the maximum activation of units avoids that excessive inhibition accumulates in
correspondence to places that are foveated multiple times, as in the case of targets
(see section 8.3.4).

During each saccade a hard-wired mechanism shifts the pattern of activation of
the map in the direction opposite to the eye’s motion in order to maintain it activation
in an eye-centred reference frame.

Section 8.2.9 shows that the tasks used to test the models are organised in blocks
each composed of eight presentations of the same image. When the image changes
from one block to another, the activation of all units of the inhibition-of-return map
is set to zero. This implies that the system empties the memory of the previously
visited positions which so are no longer inhibited. This hardwired reset mechanism
is used here to avoid interference between blocks and might have a correspondent
in real brains where the inhibition-of-return process seems to be actually reset when
the scenes abruptly change (Klein, 2000).

8.2.6 Potential Action Map

The potential action map (“PAM”) implements the top-down attention processes of
the system. At each time step, the PAM is updated so as to accumulate the evidence
collected by the system while exploring different cues on the different potential
positions of the target. At each step, the information on the possible localisation of
the target rendered by the currently foveated object is expressed by the “vote map”.
This is the output layer of units of the actor component of the actor-critic model
described in section 8.2.7. As we shall see, the units of this map learn to be more
active for positions where the target might be with respect to the currently foveated
object.



168 D. Ognibene, C. Balkenius, and G. Baldassarre

The PAM accumulates the step-by-step activation of the vote map and is subject
to a decay. More precisely, the PAM is formed by leaky neurons pi jt which receive
a topological activation yi jt from the vote map and have the following activation:

pi jt = (1− δ )pi jt−1 + yi jt (8.4)

where δ is a decay coefficient.
Note that in the tests reported in section 8.3 two versions of the model were

tested, one with the PAM map storing a memory on the information returned by
the previously explored objects, and one without such memory. The model with
the memory was obtained by setting the parameter δ > 0, whereas the memoryless
version of the model was obtained by setting δ = 0. For ease of reference the two
models with and without memory will be henceforth called “BASE model” and
“PAM model” respectively.

As in the case of the inhibition-of-return map, during each saccade a hard-wired
mechanism shifts the activation of this map in the direction opposite to the eye’s mo-
tion in order to maintain it in a eye-centred reference frame. Moreover, a hard-wired
mechanism sets to zero the activation of the PAM’s units each time the scanned
image changes between different blocks of the tests.

8.2.7 Actor-Critic Model

The actor-critic model allows the system to store knowledge about the possible
(deterministic or probabilistic) relative spatial relations existing between different
foveated objects and the target. The actor-critic model consists of two main com-
ponents, the actor and the critic (Sutton and Barto, 1998). The actor is a two-layer
neural network which has the fovea units’ activation xkl as input, all-to-all connec-
tions wi jkl , and a map of units as output, called the “vote map”, whose activation yi j

is computed as follows:
yi j = ∑

kl

[
wi jkl · xkl

]
(8.5)

The critic is mainly formed by a two-layer neural network, here called “evaluator”,
which is in charge of learning to assign an evaluation to the foveated objects. The
evaluator has the fovea units xkl as input, all-to-all connection weights wkl , and a
linear unit v as output:

v = ∑
kl

[wkl · xkl] (8.6)

The evaluator’s weights are updated on the basis of the TD learning rule (Sutton and
Barto, 1998):

∆wkl = η · st · xklt−1 (8.7)

where η is a learning coefficient and st is the “surprise” computed as follows:

st = (rt + vt)− vt−1 (8.8)

where rt is the reward signal that the system receives when it foveates the target.
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The actor’s weights are updated on the basis of the surprise signal st and a modi-
fied ∆ -rule (initially proposed in Ognibene et al., 2006) that takes into consideration
the fact that the system represents actions with “population codes” (Pouget et al.,
2000) or “neural fields” (Erlhagen and Schöner, 2002):

∆wi jkl = α
((

yi jt−1 + ai jt−1 · st
)− yi jt−1

)(
yi jt−1

(
1− yi jt−1

))
xklt−1 (8.9)

where α is a learning rate,
(
yi jt−1 + ai jt−1 · st

)
plays the role of desired output and(

yi jt−1
(
1− yi jt−1

))
is the derivative of the sigmoid function. In this formula, the

desired output is such that it tends to increase yi jt−1 when the surprise st is posi-
tive, and to decrease it when the surprise is negative (and to do so only for units
with ai jt−1 > 0: these play the same role of the unit encoding the “winning action”
in discrete-action reinforcement learning). Note that the formula can be easily re-
written to show that at its core there is a Hebb rule involving the units xklt−1 and
ai jt−1 of the input and output maps:

∆wi jkl = α · st
(
yi jt−1

(
1− yi jt−1

))(
ai jt−1 · xklt−1

)
(8.10)

8.2.8 Parameter Settings

In the experiments reported in section 8.2 the parameters were set as follows: stan-
dard deviation of the Gaussian functions σ2 = 1.6 (where 1 is the distance be-
tween two units); parameter of noise added to the saliency map for action selection:
ν = 0.08; connection weights of bottom-up attention map β = 0.15; connection
weights of top-down attention map τ = 0.1; connection weights of inhibition-of-
return ι = 0.16; decay coefficient of inhibition of return ε = 0.5; maximum activation
of the units of the inhibition-of-return map φ = 0.5; reinforcement-learning critic’s
discount factor γ = 0.1; critic’s learning rate η = 0.001; actor’s learning rate α =
0.001; training phase: T = 160,000 images (equivalent to 20,000 “image blocks”,
see section 8.2.9).

8.2.9 The Tasks

The BASE and the PAM models were tested with two tasks, and some variants of
them, having an increasing level of difficulty. As the solution of the tasks requires the
same knowledge, the models were first trained on the basis of the simplest version
of the first task and then tested in all other conditions (see section 8.3). The tasks
are now explained in detail.

1-cue/x-dis task. Fig. 8.2 shows three example images used in this task. The im-
ages are randomly created by positioning a green cue (object) in a random vertex of
a 5×5 grid, and the red target in a randomly selected vertex having either the same
column or row of the cue. Note that this setting, which varied in different “blocks”
(see below) of the tests, creates a stochastic regularity in the relative positioning of
the cue and the target: the target had an equal chance of being on a vertex of the
grid positioned on a “cross-shaped” area centered on the cue. Variants of the task
were obtained by positioning a certain number of blue distractors on the remaining
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vertexes of the grid. In the tasks the number of distractors varied from one to ten:
“x-dis” in the name of the task stands for the specific number of distractors used in
the various tests (see section 8.3).

In all tasks each randomly image generated was presented for a sequence of
eight simulation time steps: henceforth each sequence will be called a “block”. The
task with no distractors was used to test if the models were capable of integrating
bottom-up and top-down attention. To do so the models had to learn, via the top
down-attention components, in which area they could find the target with respect to
the cue, and then they had to find the target within such area via bottom-up attention.
The version of the task with distractors was used to test if the models were capable
of keeping the memory of the target area suggested by the cue in the case one or
more distractors in such area were foveated before the target was found (this was
supposed to be a capacity possessed by the PAM model but not by the BASE model).

Fig. 8.2 Examples of images used in the “1-cue/x-dis” task (here x is equal to zero, three and five
distractors, respectively in the three images). The black, dark grey and light grey squares in the
images represent respectively the green cues, the red targets and the blue distractors.

2-cue/x-dis task. Fig. 8.3 shows an example of a sequence of four images used in
this task. If the images are overlapped, they produce a whole image composed of:
(1) two cues that are set on two vertexes of a 5×5 grid that are selected at random
but have different columns and rows; (2) a target set on one of the two possible
vertexes (selected at random) corresponding to the column of one cue and the row
of the other cue; (3) a certain number of distractors set at random on the remaining
vertexes (with the exception of the position, out of the two potential positions of
the target, left empty). Note that here the images used in the task were divided into
four images presented in sequence respectively one, one, one and five times during
each “block” (Fig. 8.13). This was done to avoid a local minimum that prevented us
to test the integration capabilities of models due to the fact that we had only three
colours and this prevented us from having two different cues. In fact, we initially
tried to directly use the whole images described above (i.e., the images including
the target, two cues and the distractors) but once the models foveated the first cue
they immediately tried to search the target on the row and column of the first cue
instead of searching the second cue (this strategy was actually more efficient as in
the setting described above the second cue was set outside the area indicated by the
first cue: it was not possible to put the second cue inside the area indicated by the first
cue – as suggested by the example of the car in the street suggested below – since,
as the cues had to be the same, it was not possible to create a hierarchy between
them). In future work, the use of a more complex object recognition component will
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allow us to remove this simplification (see section 8.4), introduced here to allow
running simple clear tests of the of the basic functionalities implemented by the
model. This task required not only to integrate bottom-up and top-down attention
and to retain information in memory, as in the previous task, but also to integrate
information coming from two cues, for example by searching the target within an
area corresponding to the intersection of the two areas suggested by the two cues.
This function can be implemented only by the PAM model as it requires the memory
of the action suggested by the first one of the two foveated cues. To give an idea of
the use of this capability, think about an eye that has to foveate a person in a city. A
strategy to solve this task might be finding a street, scanning its surface in search of
a car, and looking the through the car’s windows to see if there are people inside. In
this example, a first cue (the car) is used to search a second cue (the car) and then
the target by integrating the information given by the two cues.

(a) (b) (c) (d)

Fig. 8.3 Example of images used in a block of 2-cue/5-dis task. (a) The first image of each block
contains only the first cue, used as the first input to the models. (b) The second image reports
both cues to allow the test program to evaluate if the models select the first cue, and to allow the
models to see the second cue. (c) The third image reports the second cue, to allow the test program
to evaluate if the models select the second cue, and the target plus the distractors. (d) The fourth
image, repeated five times in each block, contains only the cue and the distractors.

In all tasks the cue(s) have maximum luminosity (i.e., their RGB colour values are
set to 255) whereas the target and distractors have a lower luminosity (colour val-
ues set to 230). This simple technique was used to bias the system to first foveate
cues and then other objects so as to ease the statistical analysis of the models (see
section8.3). Both training and tests consisted in the presentation of a certain number
of blocks of images to the systems plus a reward signal of one each time the models
foveated the target.

The performance was always computed as the percent of times in which the
systems’ eye was on the target. These settings implied that the maximum theoretical
performance in the tasks, without considering the negative effects of distractors, was
as follows:

• 1-cue/x-dis task, 7/8=.8750: the optimal model would first foveate the cue, then
the target and then stay on it.

• 2-cue/x-dis task, 6/8=.7500: the optimal model would first foveate the first cue,
then the second cue, then the target and then stay on it.

Note that the tests use simplified images (e.g., objects identified by colours, and
positions of objects on a grid) to ease the analysis of the models reported below. In
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fact they allow computing optimal performance, analyse the sequences of behaviour,
explain the functioning of the systems’ components, etc. However, as mentioned in
section 8.4, this is not a limit of the architecture as it might be endowed with more
sophisticated components, such as a more sophisticated object-recognition compo-
nent, in order to let it tackle more complex tasks involving real-world images.

8.3 Results

This section illustrates the performance and functioning of the BASE and the PAM
models when tested with the tasks illustrated in section 8.2.9. In particular, the
models are first trained on the basis of the simplest version of the first task as the
solution of the two tasks requires the same knowledge (section 8.3.1). Then the
models are tested with various versions of the tasks to analyse the functioning of
their various components: the bottom-up attention map and the inhibition-of-return
map (section 8.3.2), the vote map (section 8.3.3), and the potential action map (sec-
tions 8.3.4, 8.3.5, 8.3.6).

8.3.1 Learning and Performance of the Models

Fig. 8.4 illustrates the learning curves of the BASE and the PAM models trained
with the first task for 20,000 image blocks each having a random number of distrac-
tors (from one to five). The figure also reports two simulations where the parameter
ν of the exploration noise was set to zero in the two models. These experiments were
carried out with two goals in mind: (a) testing if the bottom-up mechanisms driv-
ing the systems is capable of generating the necessary explorations needed by the
functioning of reinforcement learning algorithms without the addition of noise: this
is an interesting function that this mechanisms might play if reinforcement learning
algorithms are used to learn eye motion; (b) evaluating the capacity of the models
to learn to stay on targets once found. The results show that the PAM model learns
fast both with and without noise and reaches a steady state value. On the contrary,
the BASE model with noise learns more slowly and achieves lower performance
than the PAM model: we shall see in section 8.3.5 that this lower performance is
caused by the fact that, since the BASE model does not have the memory of the
potential action map, once it foveates a distractor it looses the information given by
the cue. Moreover, the BASE model with no noise achieves a very low performance:
as we shall see in section 8.3.4 this is due to the fact that the model is not capable
of producing the experience necessary to learn to stay on the target.

After training, the four trained models were systematically tested on 50,000
blocks of various versions of the two tasks: 1-cue/0-dis, 1-cue/5-dis, 1-cue/10-dis,
2-cue/5-dis, 2-cue/10-dis. The results are reported in Table 8.1 which shows vari-
ous interesting facts. First, the test run with the 1-cue/0-dis task confirm that the the
BASE no-noise model does not fully learn the task. Second, they indicate that in the
1-cue/x-dis tasks with five or ten distractors the PAM model outperforms the BASE
model. As we shall see in section 8.3.5, this higher performance is due to the PAM
model’s capacity to retain in memory the information provided by the cues when
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Fig. 8.4 Learning curves of the BASE and the PAM model trained with the presentation of 20,000
blocks of the 1cue/0dis task. The x-axis reports the blocks of eight images presented in sequence to
the models whereas the y-axis reports the models’ performance computed as the percent of times
in which the systems’ “eye” was on the target (the values reported by the curves correspond to this
performance filtered with a moving average having a window size of 256 blocks).

the system foveates distractors (note that the difference in performance with the
BASE model increases with a higher number of distractors, e.g. passing from five
to ten). Third, in 2-cue/x-dis tasks with five or ten distractors the PAM model’s per-
formance is much higher than the BASE model’s one, and this difference increases
with a higher number of distractors, for example with five and ten distractors, the
PAM model’s performance is respectively 139% and 211% (i.e. more than double)
of the BASE model’s performance. As we shall see in section 8.3.6, this is due to the
PAM model’s capacity of integrating information given by the two cues so as to be
capable of precisely locating the target notwithstanding the presence of distractors
in areas suggested by the cues taken alone.

8.3.2 Bottom-Up Attention: Periphery Map and
Inhibition-of-Return Map

This section analyses the functioning of the bottom-up components of the mod-
els, namely the periphery map and the inhibition-of-return map. For this purpose,
Fig. 8.5 shows an image used in a block of the 1-cue/10-dis task and the activation
of the saliency and inhibition-of-return maps of a MAP model after five exploration
steps of the image. The data have been collected with a system that has not yet been
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Table 8.1 Performance of the BASE and PAM models (with and without noise) in 50,000 blocks
of five variants of the two tasks. The last two rows of the table report respectively the relative
performance of the PAM and BASE models and the theoretical performance (not considering the
distractors). Each cell of the first four rows reports the performance of the models both in terms
of the fraction of steps in which the models got rewarded and as the fraction of such steps with
respect to fraction of steps of the theoretical performance. Note that a performance higher than
the theoretical one in the 1-cue/0-dis task is due to minor implementation biases with respect to
the ideal test (e.g., the models found themselves already on the target in the first image of some
blocks).

Architecture 1-cue/0-dis 1-cue/5-dis 1-cue/10-dis 2-cue/5-dis 2-cue/10-dis
BASE 0.8892 - 1.02 0.6792 - 0.78 0.4537 - 0.52 0.4980 - 0.57 0.3094 - 0.35
BASE no-noise 0.4999 - 0.57 0.1732 - 0.20 0.0945 - 0.10 0.1340 - 0.15 0.0748 - 0.08
PAM 0.8913 - 1.02 0.7445 - 0.85 0.5503 - 0.63 0.6909 - 0.79 0.6525 - 0.75
PAM no-noise 0.8906 - 1.02 0.7177 - 0.82 0.4979 - 0.57 0.6989 - 0.80 0.6487 - 0.74
PAM/BASE 1.00 1.09 1.21 1.39 2.11
Theor. perf. 0.8750 0.8750 0.8750 0.7500 0.7500

trained so that there are no top-down influences on the saliency map. This implies
that the saliency map’s activation reflects only the input from the periphery map and
the inhibition-of-return map. This also implies that a BASE model would have had
a similar behaviour as the one described in the following. Note that in this sections
and the following ones, the noise of the saliency map was set to zero to have clearer
analyses of the models and to show their intrinsic exploratory properties.

(a) (b) (c)

Fig. 8.5 (a) an image used in one block of the 1-cue/10-dis task; (b) activation of the inhibition-of-
return map: black dots are proportional to the activation of the corresponding neurons in the map;
(c) activation of the saliency map: white dots indicate activations above 0.5 (this are caused by the
periphery map) whereas black spots indicate activations below such value (this are caused by the
inhibition-of-return map). The sizes of the dots are proportional to the activation of the neurons.

The figure shows that while the eye explores the image (Fig. 8.5a) it generate clus-
ters of inhibited neurons with an inhibition that decreases with elapsing of time
(Fig. 8.5b). The figure also shows that the model explores only regions of the image
where there are objects thanks to the bottom-up effects of the periphery map (note
how clusters of inhibited activity, caused by eye’s visits, fall only on spots where
there is a bottom-up excitation from objects, see Fig. 8.5c). The interplay between
the bottom-up saliency of the image’s elements and the inhibition of return generates
a rather efficient exploratory behaviour.
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8.3.3 Analysis of the Vote Maps

Fig. 8.6 shows the activation of the vote map of the BASE and PAM models when
the systems foveate either a target, a cue or a distractor. The activations are similar
for the two models, so they can be explained together. The graphs show that when
the systems foveate a target, the vote map has these activations: (a) a cluster of neu-
rons activated above 0.5 in correspondence to the centre: this lead the eye to stay
on the target; (b) clusters of neurons activated below 0.5 in the remaining places:
this bias the eye to avoid moving to any other place. When the systems foveate a
cue, the vote map has these activations: (a) a cluster of neurons activated below 0.5
in correspondence to the centre: this bias the eye to move away from the cue (this
strengthens the effect of inhibition of return); (b) clusters of neurons activated above
0.5 in correspondence to the row and column of the cue: this bias the eye to move on
objects on such column and row and captures the regularity related to the probabilis-
tic spatial relations existing between the cue and the target; (c) cluster of neurons
activated below 0.5 in the remaining places: this bias the eye to ignore distractors
located in such positions. When the systems foveate a distractor, the vote map has
these activations: (a) a cluster of neurons activated below 0.5 in correspondence to
the centre: this bias the eye to move away from the distractor (this strengthen the
effect of inhibition of return); (b) scattered clusters of neurons with activation above
or below 0.5: the function of these activations is at the moment unclear and is still
under examination.

(a) (b) (c)

(d) (e) (f)

Fig. 8.6 Activation of the vote map of the trained BASE model (a, b, c) and of the trained PAM
model (d, e, f) when the systems foveate a target (a, d), a cue (b, e) or a distractor (c, f). White
dots indicate activations above 0.5 of the corresponding neurons, whereas black spots indicate
activations below such value. The size of the dots is proportional to the activation of the neurons.
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8.3.4 Capability of Learning to Stay, and of Staying, on the
Target

We are now in the position to explain in detail why the BASE no-noise model fails
to learn the 1-task/x-dis task (with one to five distractors), and as a consequence
has a low performance in other (variants of the) tasks, whereas the PAM model
(both with and without noise) quickly learns to stay on the target once found and
hence has a high performance in all variants of the tasks. Direct observation of the
behaviour of the BASE no-noise model during learning shows that when it finds
the target it always moves away from it in the following step. On the contrary, the
PAM model goes from the cue to the target and then stays on it. Fig. 8.7, which
shows the average rewards that the two models get in the eight steps of the blocks,
presents a quantitative account of these behaviours. The figure shows that, contrary
to the PAM model, the BASE no-noise model tends to visit the cue in the first step
of each block, then finds the target, but then goes back to the cue and repeats this
behavioural pattern till the end of the block.

(a) (b)

Fig. 8.7 1-cue/0-dis task: mean reward (y-axis; averaged over 50,000 blocks) that the BASE no-
noise model (a) and the PAM model (b) receives in correspondence to the eight time steps of blocks
(x-axis).

An analysis of the vote maps of the two models and of the related saliency maps,
reported in Fig. 8.8, explains the reason of this different behaviours. Inhibition of
return tends to have a negative effect when the eye is on the target, as it is highest
for the currently foveated location, and so bias the eye to other locations. The BASE
no-noise model is not capable of compensating this bias and so moves away from
the target (Fig. 8.8d). The point is that, not being capable of remaining on the target,
the system is not capable of producing the necessary experience needed to learn to
stay on it. Fig. 8.8a shows that, as a consequence, the vote map learns a sub-optimal
strategy: since the model is not capable of staying on the target, it votes to go back
to the cue as this is followed by another rewarded target. On the contrary, the PAM
model is capable of compensating the negative effect of inhibition of return thanks to
the positive bias generated by the cue in the previous time step and still memorised
in the Potential Action Map (this bias can be seen in Fig. 8.8e in terms of the clusters
of units with an activation above 0.5 spatially arranged as a cross-shape). Fig. 8.8b
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(a) (b) (c)

(d) (e) (f)

Fig. 8.8 Top graphs: activation of the vote maps of the BASE no-noise model (a) and the PAM
model (b; same as Fig. 8.6a) when looking at the target of an image (c) of the 1-cue/0-dis task.
Lower graphs: activation of the saliency map of the BASE no-noise model (d) and of the PAM
model (e) as soon as they foveate the target, and activation of the saliency map of the PAM model
after two steps (f).

shows that, as a consequence, the vote map learns the optimal strategy of staying on
the target once found: this allows the model to remain on the target even when the
cue’s bias fades away from the potential action map memory and the inhibition of
return on the cue decays to zero.

We have seen (Table 8.1) that the BASE model (i.e. the BASE model with noise)
learns successfully to solve the 1-cue/x-dis task. The reason for this is that noise al-
lows the system to occasionally overcome the negative effect of inhibition of return
when the system is on the target. This allows the system to develop a bias to stay
on the target similar to the one developed by the PAM model. However, it should
be noticed that this solution based on noise is less powerful than the solution of the
potential action map’s cue-bias exploited by the PAM model that works each time
the target is found and not only sporadically as the solution based on noise. This
is demonstrated by the fact that the PAM model learns much faster than the BASE
model (see Fig. 8.4).

8.3.5 Potential Action Map: An Action-Oriented Memory of Cue
Information

This section explains in detail one of the main functions played by the potential
action map, that is the capacity of memorising the information on the target rendered
by a given cue in a format readily usable for guiding action. To show this function,
the BASE and PAM models were tested with 50,000 blocks of the 1-cue/10-dis task.
The results of the test reported in Fig. 8.9 give broad indications of the behaviour of
the two models during the test. The graphs in the figure report the probability that
the models’ eye is on the target in the eight steps of the blocks. A comparison of the
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two models with respect to this aspect indicates that they do not differ with respect
to the first step, usually involving the foveation of the cue, and the second step,
usually involving the foveation of either the target or a distractor with a probability
of respectively about 30% and 70%. Note that in the second step models can use
both the bias from the cue to search the target on the“cross area” centred on the
cue and the bottom-up information from the target or the distractors. Without the
bottom-up information, they would have a chance of about 9% = (1/11)× 100 of
finding the target and 91% =(10/11)×100 of finding a distractor. The most relevant
difference between the models happens on the third step. Here the probability that
the PAM model moves to/is on the target is about 50% whereas the BASE model’s
one is 40% (this advantage is then maintained in the succeeding steps). The reason
of this is that in the case the BASE model foveates a distractor after the foveation
of the cue (second step), it completely looses the information on the target given
by the cue. On the contrary, the PAM model is capable of continuing to search in
the “cross-shaped” area indicated by the cue by exploring in sequence all the spots
within such area marked by the bottom-up salience.

(a) (b)

Fig. 8.9 1-cue/10-dis task: mean reward (y-axis; averaged over 50,000 blocks) that the BASE
model (a) and the PAM model (b) receive in correspondence to the eight time steps of blocks
(x-axis).

Fig. 8.10 supports this interpretation by furnishing a further analysis of the be-
haviour of the two models. The figure shows the ten most frequent sequences of
objects foveated by respectively the BASE model and the PAM model during the
50,000 blocks of the test. As it can be seen, the sequence where the models first
foveate the cue and then the target has the same frequency for both models (see the
first most frequent sequence). However, the PAM model’s second and third most
frequent sequences are those where the system foveates one or two distractors after
the cue and before the target. These are the best moves the model can perform when
it fails to find the target in the first step after the cue. On the contrary, in the case of
the BASE model, these two sequences have only the third and fifth rank in frequency
and, what is more important, have a much smaller absolute frequency with respect
to the PAM model (in particular, a frequency of about 0.05 and 0.04 respectively in
the case of the BASE model versus 0.19 and 0.10 in the case of the PAM model).
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(a) (b)

(c) (d)

Fig. 8.10 1-cue/10-dis task: ten most frequent sequences of objects foveated by the BASE model
(a) and histogram of related frequencies (b), and analogous data related to the PAM model (c
and d respectively). In graphs (a, c) the vertical axis reports the sequences of object foveated by
the models during the eight time steps forming blocks (black: cue; dark grey: target; light grey:
distractors), whereas the horizontal axis reports the different sequences. In graphs (a, c) the vertical
axis reports the fraction of blocks in which the sequences are used during the whole experiment
(50,000 blocks).

Fig. 8.11 shows why the two models exhibit such behaviour after they encounter
a distractor after the cue, in particular why the PAM model can still have a good
performance after such “mistake” occurs. The figure shows the activation of the
saliency map of the two models when they are on the cue, and the activation of the
same map when the models visit a distractor after the cue. The activation of the
map of the two models is similar when the cue is foveated, but differs when the
models foveate a distractor in the following time step. In particular, contrary to the
BASE model, when the PAM model foveates the distractor it maintains an activation
corresponding to the potential positions where the target might be as suggested by
the cue (see the clusters of highly activated units spatially organised as a cross-shape
in Fig. 8.11d).

8.3.6 Potential Action Map: Capacity to Integrate Multiple
Sources of Information

This section explains another important function played by the potential action map,
that is the capacity of integrating the information on the target rendered by more
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(a) (b)

(c) (d)

Fig. 8.11 Activation of the saliency map of the BASE model when it foveates a cue (a) or a
distractor after the cue (b). Graph (c) and (d) show analogous data relative to the PAM model. Note
in (d) the cluster of white dots (units activated positively) spatially organised to form a cross-shape
centred on the position of the visited cue: the activation of these units is caused by the potential
action map.

than one cue. To illustrate this function, the BASE and PAM models were tested
with 50,000 blocks of the 2-cue/10-dis task. Fig. 8.12 reports some results of this
experiment that, together with a direct observation of behaviour, furnish a general
idea of the strategies used by the two models to tackle the task. In the first and
second step, the two models get zero reward as only the cues are visible. In the third
and fourth steps the models’s performance diverges dramatically: the PAM model
is on the target about 70% and 90% of the times respectively, whereas the BASE
model only 25% and 30% of the times respectively.

(a) (b)

Fig. 8.12 2-cue/10-dis task: mean reward (y-axis; averaged over 50,000 blocks) that the BASE
no-noise model (a) and the PAM model (b) receives in correspondence to the eight time steps of
blocks (x-axis).
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The reasons of this higher performance can be understood considering the most
frequent sequences of moves performed by the two models, presented in Fig. 8.13.
In this regards, the figure indicates that the PAM model’s first choice is the optimal
sequence formed by the two cues followed by six targets (this sequence is selected
about 70% of the times), whereas this sequence is only the second choice of the
BASE model (selected only about 25% of the times). The reason of this is that the
PAM model can find the most likely position of the target by integrating the infor-
mation from the two cues (Fig. 8.13c-d), and when it makes a mistakes (i.e. foveates
a distractor after the cue) can often recover in the successive moves (see sequences
2, 4, 5, 6 in Fig. 8.13c, which include an increasing number of distractors before the
target and have a decreasing frequency). On the contrary, the BASE model cannot
exploit the information returned by more than one cue, so it has lower chances of
finding the target after the two cues. Moreover, if it foveates a distractor instead of
the target after the two cues it “gets lost” as it has not retained in memory the infor-
mation from the cues, and so starts to search the target with a random search (see
sequences 3-7 in Fig. 8.13a, which have a similar frequency, Fig. 8.13b)

(a) (b)

(c) (d)

Fig. 8.13 2-cue/10-dis task: ten most frequent sequences of objects foveated by the BASE model
(a) and histogram of related frequencies (b), and analogous data related to the PAM model (c
and d respectively). In graphs (a, c) the vertical axis reports the sequences of object foveated by
the model during the eight time steps forming blocks (black: cue; dark grey: target; light grey:
distractors; white: saccade out of any object), whereas the horizontal axis reports the different
sequences. In graphs (b, d) the vertical axis reports the fraction of blocks in which the sequences
are used during the whole experiment (50,000 blocks).
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This interpretation is corroborated by the data presented in Fig. 8.14, which show
the activation of the saliency map of the BASE model and PAM model when they
foveate the first cue and then the second cue. The graphs clearly show that the PAM
model records information given by the two cues and so has a high probability of
searching the target on the two intersections of the two cross-shaped areas suggested
by the cues, whereas the BASE model looses the information about the first cue
when it foveates the second cue.

(a) (b)

(c) (d)

Fig. 8.14 Activation of the saliency map of the BASE model when it foveates the first cue (a)
and then the second cue (b). Graph (c) and (d) show analogous data relative to the PAM model.
Note in (d) the cluster of white dots (units activated positively) spatially organised to form a cross-
shape centred on the position of the two visited cues: the activation of these units is caused by the
potential action map.

8.4 Conclusions

This paper presented an architecture that combines a basic bottom-up attention sys-
tem, analogous to systems proposed within the literature on visual attention, and a
novel top-down component, the Potential Action Map (PAM), which uses reinforce-
ment learning to learn to attend to rewarded stimuli. This map functions as a memory
that accumulates evidence in favour of the locations where rewarding targets might
potentially be located with respect to foveated cues.

The architecture, and in particular the potential action map component, have a
number of appealing features. Some of these were investigated within the work
reported here whereas others will be tested in the future.

The first strength of the architecture is its capacity to integrate bottom-up and top-
down processes. The architecture shares this feature with other models, for example
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the one proposed by Balkenius and Johansson (2007). However, it should be noticed
that that architecture does not integrate bottom-up attention, inhibition of return and
top-down attention in a flexible way. In particular, it integrates them with a simple
summation which makes the contributions from the various components rather rigid.
A possible solution to this problem would be to let the system learn the relative con-
tribution that the various components should give to the final action decision taking
place at the level of the saliency map (see for example Balkenius et al., 2004). In-
deed, in the current architecture’s implementation it was not straightforward to tune
the contributions of the various maps to the saliency map by hand so as to enhance
learning. For example, the balance between the inhibition-of-return map, that tends
to drive the eye away from foveated objects, and the top-down attention map, which
drives the eye to remain on targets once found had to be carefully adjusted.

Another strength of the architecture is that it fully works in eye-centred coor-
dinates. Eye-centred representations not only reflect empirical findings on neural
representations used in real brains (Dominey and Arbib, 1992; Shadmehr and Wise,
2005), but they also have various computational advantages. A first advantage, men-
tioned in the introduction, is that complex visuomotor transformations can be im-
plemented in later phases of the sensorimotor flow where information is usually
encoded in more abstract forms. For example, here all visual processes (inhibition
of return and bottom-up and top-down attention processes) were implemented on
the basis of eye-centred reference frames. The transformation of information to a
body/environment-reference frame, needed to issue the desired gaze command to
the motor eye system, took place at a later stage in the form of a summation of the
current eye posture and the desired eye displacement.

An alternative strategy would have been to use the retinal images to build a
body/environment-centred representation of the environment, to apply the visual
processes to it, and then to activate the saliency map according to these. However,
this would have required the system to apply computationally shifts to the retinal im-
ages, which would be much heavier than the shifts applied here to the action-oriented
memories implemented by the inhibition of return and potential action maps.

Another advantage is that eye-centred representations are “deictic” in the sense
that they encode information “by pointing” with respect to the context in which
they are used (e.g.: “move to direction x with respect to currently foveated point”).
Deictic representations simplify computations and enhance the generalisation ca-
pabilities of systems (Ballard, 1991). For example, here the actor could learn the
relative spatial relations existing between the cue and the target by representing
these relations with respect to the currently foveated cue. This allowed the actor to
have a simple structure, to learn fast, and to automatically generalise its knowledge
with respect to the absolute position of the cue/target couples.

Another advantage of the potential action map becomes apparent when it is used
in partially observable environments (as the one consider here; (Whitehead and Lin,
1995)) or stochastic environments. In the case of partial observability of environ-
ments the potential action map makes the model capable of testing various available
options at a given uncertain state without the need of explicitly encoding such state.
For example, assume that when the system is in state A or state B it has the same



184 D. Ognibene, C. Balkenius, and G. Baldassarre

perception SAB to which it associates two different areas in which to search the tar-
get (one learned when the system visited A in the past and the other when it visited
B). In this case, the system might decide to first greedily visit the one of the two
areas which is most promising in terms of reward. The point is that in case of failure
of this greedy search, the system might still visit the other area by directly moving
from the new state to such area on the basis of the information collected at SAB, that
is without the need of going back to it. Notice that the system can use a similar so-
lution also in the case when the world is stochastic and the system selects an action
that leads to an undesired state: it can still select an action that attempts to have the
same effects of the previous one, that is, it can still use the information given by the
previous state (eventually integrated with that of the new state).

In the future, it might be interesting to evaluate if the idea of the potential action
map, and the mentioned advantages, might be extended to other control domains.
For example, in the control domain of robotic arms engaged in reaching tasks the
potential action map might represent the arm’s potential actions within a neural map
encoding the arm’s “equilibrium points” (that is, the desired postures: see Ognibene
et al., 2006; Herbort et al., 2007).

Notwithstanding the aforementioned strengths, the current implementation of the
model has various limitations that might constitute the starting point for future work.
A first limitation is the simplified bottom-up attention component. However, as men-
tioned in section 8.2.4, this is not a general drawback of the architecture as this com-
ponent might be easily substituted with a more sophisticated component capable for
example of performing detection of edges, colours, motion, etc. (Itti et al., 1998; Itti
and Koch, 2001a; Balkenius et al., 2004).

A second limitation is the simplified object-recognition component, currently
based on a simple colour-detection device. Again, as mentioned in section 8.2.3, this
is not a general drawback of the architecture as this component might be substituted
with mechanisms capable of implementing more sophisticated feature-extraction
processes (see for example Rao and Ballard, 1995; Riesenhuber and Poggio, 1999).

A last limitation is that some important mechanisms used by the architecture are
currently hardwired. These mechanisms are the reset of the memories (inhibition of
return and potential action maps) when the scene changes, and the shift of their acti-
vation when the eye moves. The first mechanism, implementing the reset of memo-
ries, might be substituted with neural mechanisms that reset memories only locally
on the basis of abrupt changes of the activation of the neurons of the bottom-up
attention maps. A similar mechanism seems to operate in real brains for inhibition
of return (Klein, 2000) and was used by Balkenius (2003) to reset a memory for
visual context. The second mechanism, the shift of memories, seems to play an im-
portant role in visuomotor transformations implemented in real brains (Gnadt and
Andersen, 1988; Shadmehr and Wise, 2005). Various neural models of this mecha-
nism have been proposed in the literature, for example based on dynamic networks
(Dominey and Arbib, 1992; Zhang, 1996) or “gain fields” (Casarotti et al., 2003;
Shadmehr and Wise, 2005 for a review). Some of the algorithms used in these mod-
els might be suitably used to substitute the currently hardwired shift mechanism in
future implementations of the architecture.



Chapter 9
Anticipation by Analogy

Boicho Kokinov, Maurice Grinberg, Georgi Petkov, and Kiril Kiryazov

9.1 Introduction

Why do we expect to find intelligent creatures on other planets in the Universe? Is
there a general low stating it? Is there a theory that predicts it? Do we have many
examples in order to generalize from them? No. Our anticipation to find intelligent
beings is based on analogy with the only example we know - the planet Earth. More-
over, if we analyze the description of these potential creatures in the science fiction
literature and movies, we will find out that all out imagination about these creatures
is based on analogies with the human race or other animals on the Earth. Similarly,
when the Europeans arrived for the first time at other continents, they expected the
population there to have a culture analogous to the European and when this turned
out not to be true, they announced ”the other” to be ”less developed”, exactly as the
Romans declared all non Romans to be Barbarian. The same happens to each of us
when traveling to a new country - we always expect to find patterns of behavior that
are analogous to the patterns we are familiar with in our own culture and are highly
surprised when these anticipations turn out to be wrong. Young children expect an
object to breath or feel pain to the extent to which they consider it analogous to
the human being ((Inagaki and Hatano, 1987). All these examples demonstrate that
when human cognition faces a new situation it usually uses analogy with a previ-
ously experienced or familiar situation to make predictions of what to expect. These
analogies do not necessarily lead to correct predictions, but this is often the best the
cognitive system can do under the given circumstances (especially in a new domain,
where little knowledge is present).

From computational perspective analogy-making is a good heuristics that makes
effective short-cuts in the exhaustive search of the state space. Suppose you have to
search for your keys. Theoretically they can be everywhere at your place or even
outside it. So, if you want to be sure you will find them you should search the whole
space and look under, inside, and behind every single object around you. This will,
however, keep you busy forever. Analogy-making will provide you with a heuristics
where to look first (rather than searching for the key randomly) - it might be worth

G. Pezzulo et al. (Eds.): The Challenge of Anticipation, LNAI 5225, pp. 185–213, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



186 B. Kokinov et al.

exploring the place where last time you found your keys - it is very probable that
you put them there again. There is an assumption here that there is some regularity
in your actions, that you do not behave randomly, which assumption makes sense.

Finally, from a cognitive perspective analogy-making is a very central and ba-
sic mechanism that is present from very early age if not from birth (Holyoak et al.,
2001), (Hofstadter, 2001), (Goswami, 2001), so it is very likely that it is used for
such an important function like anticipation. In addition, in this chapter we will ex-
plore the mechanisms of analogy-making and how they emerge from simpler mech-
anisms like spreading activation, marker passing, and elementary transfer and antic-
ipation in the AMBR model. Thus the relation between analogy-making and antici-
pation is two-fold in this model: on one hand, analogy-making is used for high-level
anticipation, on the other hand, low-level anticipations are used in the process of
analogy-making, and more specifically in the process of representation-building (or
perception).

9.2 The Anticipation by Analogy Scenario

Let us consider the simplest scenario in which a dog-robot (AIBO) is searching for a
bone hidden somewhere behind some object in one of the rooms of a house (Figure
9.2).

Fig. 9.1 The search scenarios: The AIBO robot is looking for the bone hidden behind an object in
one of the rooms of a house. This is analogous to a human being searching for the keys somewhere
in the house
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The search scenarios: The AIBO robot is looking for the bone hidden behind an
object in one of the rooms of a house. This is analogous to a human being searching
for the keys somewhere in the house.

Let us consider an even simpler scenario: the dog-robot is searching for the bone
hidden behind an object in the room (Figure 9.2). The first step would be to perceive
the environment and build a representation of the room and the objects in it (Fig-
ure 9.3). As we will see later on in the chapter even here an analogy with a similar
episode in the past might be helpful, i.e. old episodes assist us in representation-
building by suggesting (anticipating) some attributes and relations in the environ-
ment and thus focusing our attention towards them. The next step would be retriev-
ing an episode from long-term memory (LTM) that could potentially serve as a base
for analogy (Figure 9.4). Then a mapping between the old episode and the current
episode is being established and by transferring the knowledge where the bone was
in this old situation, an anticipation is formed where the bone might be now (Figure
9.5). Finally, the robot moves towards the objects and searches for the bone in the
anticipated place.

Fig. 9.2 The AIBO robot is in a room with several objects and the bone behind one of them.

Fig. 9.3 The AIBO robot perceives the scene and build a mental representation of it.

Unlike the linear description above, the actual AMBR model works in parallel, i.e.
all the above processes run in parallel and interact with each other. Thus even though
the perceptual process must somehow start by a bottom up process very early on, it
is later on guided by the bases already retrieved from memory. The mapping process
is also further influencing the retrieval of episodes, etc.
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Fig. 9.4 The AIBO robot retrieves from long-term memory an old episode that seems analogous
to the current one.

Fig. 9.5 The AIBO robot maps the two episodes and transfers the knowledge about the bone in the
old episode to the new one and thus forms a specific anticipation. Then it moves to the anticipated
place and searches for the bone.

9.3 Models of Analogy-Making

In an attempt to implement such a scenario a search for appropriate models of
analogy-making was done. In this section we will present a brief review of a number
of models.

The classics in the field is the Structure-Mapping Engine (SME) (Falkenhainer
and Forbus, 1989) - a model fo analogical mapping based on the Structure Map-
ping Theory (SMT) by Dedre Gentner (Gentner, 1983). This model assumes that
the mapping process is completely based on structural grounds and no semantic or
pragmatic considerations play any role during this mapping phase. It postulates that
only the relations are taken into account, i.e. the attributes are completely ignored.
Moreover, only identical relations are mapped to each other. A very important con-
straint is the one-to-one mapping between the elements of the base domain and
the target domain, which ensures parallel connectivity which means that when two
relations are put into correspondence their arguments should also be put into cor-
respondence. Another important constraint comes from the systematicity principle:
when there is a choice between two alternative mappings, the more systematic one is
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preferred. This is in synchrony with the idea that analogy is mapping of systems of
relations, not of isolated relations. All these main postulates are more or less shared
by all models of analogy-making proposed afterwards. There are, of course, many
disagreements in the field. For example, some researchers would not agree that only
the relations play a role and that attributes are ignored. For example, in the scenario
from the previous section the colors of the balls might be crucial for the analogy as
we shall see in the later sections. Thus this model cannot be directly applied for this
scenario. Other points of disagreements would be the need to map only identical re-
lations. Again in this scenario we may need to make more abstract analogies where
the relations in the two domains are different, but somehow similar. The SME will
not allow us to make such analogies even if we take into consideration the more
recent developments of the model where re-representations are possible. Another
related model is MAC/FAC (Forbus et al., 1995) developed by the same team of
researchers. This is a model of analogical retrieval, i.e. how an appropriate base for
analogy is retrieved from Long-Term Memory (LTM). This model has two phases:
the first one being fast and relatively cheap and selecting a few potential bases for
analogy on superficially similarity grounds (the highest number of shared attributes
and relations), and the second one being a version of the SME which selects the best
structural mapping between the potential bases and the target. This model assumes
duplicating representations of each episode in memory, one of the representations
used in the first phase, and the other in the second one. The computations require-
ments for such a model are unrealistic from the perspective of the limitations of
human working memory.

Another pair of models of analogy-making is the ACME and ARCS models
(Holyoak and Thagard, 1989), developed by a group of researchers led by Keith
Holyoak and Paul Thagard. These models overcome some of the limitations of SME
by allowing non-identical relations to be mapped and by involving semantic judg-
ments and pragmatic consideration to play a role in the mapping process. However,
this model falls into other problems requiring even bigger load on human working
memory and being too flexible, i.e. finding mappings that human beings would not
consider appropriate. This model is based on the Multiple Constrain Theory which
states that the analogical mapping is result of the competition between many po-
tentially contradictory weak constraints and the constraint satisfaction mechanism
which finds the near optimal solution. This model has also limitations like the n-
ary restriction which allow only relations with the same number of arguments to
be mapped on each other, which is not always possible in real life. Another serious
limitation is the fact that the semantic similarity judgment is not part of the model
but is feeded into the model from outside.

Both these pairs of models are considered to be unappropriate for the robot task
described above also for other reasons. In all these models the descriptions of the
target and of the bases are hand made and fed into the model, while we need the
robot to perceive and encode the scene on its own. We also do not like the pipeline
approach of these models where each nest stage is considered separately and as
being encapsulated.
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The CopyCat and TableTop models (Hofstadter and the Fluid Analogies Re-
search Group, 1995),(Mitchell, 1993),(French, 1995) developed by Douglas Hof-
stadter and his group seem more appropriate from that perspective, because these
are the only models of analogy-making which are building their own representa-
tions. Moreover, we fully agree with the statement that analogy-making and per-
ception are highly interconnected and should be understood within a single model
(Chalmers et al., 1992), where no separate phases will be isolated. The problem is
that these models are dealing only with some aspects of high-level perception, they
were developed in abstract domains like letter strings, and so no real visual input
was presented to them. This limits the applicability of these models to the robot
case, where real camera input from the physical environment is needed. Thus we
have incorporated some ideas from CopyCat and TableTop into the model we are
developing, but had to extend it further with other mechanisms to allow real vision.
Another limitation of the CopyCat and TableTop models is that they lack episodic
memory, i.e. these models do not have long-term memory for old experiences, no
retrieval from LTM, etc. Thus we preferred to incorporate the perceptual ideas into
another existing model of analogy-making, which does have episodic memory and
mechanisms for analogical retrieval.

More recently the LISA model (Hummel and Holyoak, 1997) and its derivate
DORA were developed by John Hummel and Keith Holyoak. LISA is an attempt to
build a model of analogy-making which will be closer to the computational charac-
teristics of the human brain. Thus LISA is a connectionist model based on a com-
bination of localistic and distributed representation. This is a really important step
into the right direction, however, it is still far from the real brain mechanisms and at
the same time it can hardly deal with the complex analogies that the older models
could handle. This model is more realistic from the point of view of the limitations
of human working memory and naturally explains them, it has also overcome the n-
ary restriction which is present in the above models. This model also integrates the
memory retrieval and analogical mapping into a single integrated model. All these
are important characteristics. At the same time this model has its own limitations.
The main one is the problem with dealing with complex analogies where the spe-
cific propositions need to be feeded into the model by hand one by one. Thus the
performance of the model will depend on the human assistance to the model. Also
the retrieval and mapping phase are still separated and sequential.

Thus after making this review of the existing models we came to the conclusion
that the most appropriate approach would be to extend our own AMBR model in
order to meet the new requirement of the task. The AMBR model has the advantage
that integrates mapping and retrieval in a parallel way thus allowing them to inter-
act with each other. Developing perceptual mechanisms that will be integrated in the
same parallel fashion will allow perception to be influenced by the analogy, and not
only the analogy to be influenced by what is being perceived. We also rerelied on the
IKARUS system for the low-level visual processing, a system developed by Chris-
tian Balkenius and hus colleagues at Lund University, which is biologically inspired.
Also AMBR has the advantage of being highly context-sensitive and thus efficient
in computing only those aspects that are considered relevant at a particular occasion.
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The next section describes briefly the AMBR model and then its extensions are
presented. Extensions that were developed in order to face the real world robot sce-
nario described earlier.

9.4 AMBR Model of Analogy-Making

AMBR model for analogy-making (Kokinov, 1994a), (Kokinov and Petrov, 2000),
(Kokinov and Petrov, 2001) is a multi-agent system, which combines symbolic and
connectionist mechanisms. Whereas the behaviour of the model emerges from the
local symbolic operations of a huge number of relatively simple interconnected
DUAL-agents, the relevance of these agents to the current context is represented
by their connectionist’s activation level. Thus, the meaning is separated from the
relevance. From one side, each agent stands for something - an object, a relation, a
property, a concept, a simple proposition, a procedural piece of knowledge. There
are various types of agents for concepts; tokens; hypotheses for correspondence; an-
ticipations, etc. From the other side, there are two special nodes that are the sources
of activation - the INPUT and GOAL nodes - which are representations of the en-
vironment and the goals, respectively. Activation (relevance) spreads from these
two nodes to other DUAL-agents (typically instances of objects and relations from
the target scene), then to their respective concepts and further upwards the con-
cept hierarchy, then back to some of the concept instances and prototypes. Thus,
the relevance of the items changes dynamically in response of the changes in the
environment and goals and the overall pattern of activation through the knowledge
based is assumed to represent the context. There is no separation between the se-
mantic and episodic memories - they are strongly interconnected. The active part of
the long-term memory forms the Working Memory of the model. Only active agents
can perform symbolic operations like for example sending short messages to their
neighbours, adjusting their weights, or creating new agents. This is a very impor-
tant interaction between the symbolic and the connectionist parts of the model. The
speed of the symbolic operations depends on the activation level of the respective
agent. Thus, the most relevant (active) agents work faster, the less relevant - more
slowly, and the irrelevant ones do not work at all. Table 9.1 and 9.2 summarize the
main mechanisms and agent-types used in AMBR and describe the role and the
routine of each of them in order the model to perform analogies. It is important
to note, however, that there is no any central executor, all agents work locally and
a-synchronically, and all these mechanisms run in parallel and influence each other.

9.5 Integrating Visual Perception and Motor Control in
AMBR

The AMBR model has been tested successfully with various tasks for high-level
analogy-making . However, one shortcoming of the model was that always the rep-
resentation of the target episodes were constructed manually. In addition, the set
of the winner hypotheses had to be analyzed by the programmers in order to be
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Table 9.1 AMBR basic mechanisms

interpreted as an ’answer’ of the model. Thus, implementing mechanisms for per-
ception and motor control was a big challenge. The tasks and scenarios for robots
in rooms, defined in the previous sections, require implementing a connection of
AMBR with the environment - which can be real or simulated. However, our moti-
vation was not only to add two separate modules for perception and action, but to
use the constraints, defined by the AMBR principles, in order to integrate vision,
analogy-making, anticipation formation, and action performing in a single, merged
system. The main ideas behind the integrated system is that the ability for analogical
mapping is at the core of cognition; that cognition, including perceptual representa-
tion of scenes, is highly dynamic and context sensitive; that perceptions, reasoning,
and actions are not separate modules, but influence each other in both directions.
Thus, vision is assumed as a process that starts from a very poor initial represen-
tation. Then, on the basis of large number of initial mappings, anticipations about
the possible relations and arrangements are transferred from memory and later on
verified. After on more and more complex mappings emerge on the basis of these
firstly transferred and verified relations, in turn more and more abstract anticipations
are transferred, etc. Actually there is no clear boundary when and where perceptual
process is finished and reasoning starts. In the same way, a certain action can be
triggered immediately when it seems appropriate for solving the task. For the com-
puter implementation that is organized in a three layers fashion - the world layer,
the middle layer, and the reasoning layer. Each layer is implemented by different
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Table 9.2 Main types of AMBR agents

independent modules. This allows that any of the three layers can be upgraded or
replaced as requirements or technology change, in this way limiting the impact on
the others parts of the system. The different layers and their interaction are shown
on the next illustration (Figure 9.6).

The World Layer

It can be either simulated, using appropriate software like Webots, or realized with
a robot with sensors and motor abilities, living in a real world environment.

Middle Layer

The general purpose of the middle layer is to serve as a mediator between the other
two levels, effectively translating and filtering out the information from one layer
to the other. Thus, it becomes possible to use different robots or simulators with-
out changing the reasoning layer. In addition, any conceptual improvements on the
reasoning layer do not influence directly the world layer. Some of the operations,
performed on this layer, are extraction of the needed relations between the objects
in the reduced scene representation (see bellow); re-representation of the low-level
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Fig. 9.6 Three layer architecture.

information in a suitable for the next layer form; the inverse operation - transfor-
mation of the data from the reasoning layer (the plan) into sequences of low level
commands; ensuring the communication between the other layers.

Reasoning Layer (AMBR)

The reasoning layer is the cognitive part of the system. All the information com-
ing from the middle layer is processed here and high level commands are issued
backward to it. Here is where the anticipation is built based on a very poor ini-
tial description of the current situation from one side, and knowledge of past sit-
uations in memory from other side. Here is where the representation of the scene
is created dynamically, on the bases of many created anticipations about relations
and interpretations, and their serial verifications. Here is also where large analogies
emerge, possible solutions are generated and actions are planned. In order to make
AMBR a model of the mind of a robot several new mechanisms were developed and
implemented. Most importantly, several analogical transfer mechanisms have been
developed which will allow robust predictions based on analogy. The present devel-
opment is related to the extension of the model with a dynamic top-down perceptual
mechanism, a mechanism for control of attention, mechanisms for transferring parts
from a past episode in memory towards the now perceived episode (analogical trans-
fer), and mechanisms for planning and ordering actions based on that transfer. All
new mechanisms are summarized in Table 9.3 while the new AMBR agent’s types
are given in Table 9.4. Note that all these mechanisms overlap in time and influence
each other. It should be stressed that there is no central executive in AMBR. Instead,
the AMBR agents interact only with their neighbours and perform all operations lo-
cally, with a speed, proportional to their relevance to the current context.



9 Anticipation by Analogy 195

Table 9.3 Advanced ABMR mechanisms

More detailed description of the new AMBR mechanisms follows below.

9.5.1 Top-Down Perception

It is known that when executing a task in order to achieve a specific goal, top-down
mechanisms are predominant (Duncan, 1984), (Chalmers et al., 1992). This finding
is implemented by making AMBR the initiator of information acquisition actions.

At first, the robot looks at a scene. In order for the model to ’perceive’ the scene
or parts of it, the scene must be represented as an episode, composed out of several
agents standing for objects or relations, attached to the input or goal nodes of the
architecture. It is assumed that the construction of such a representation starts by
an initial very poor representation (Figure 9.7) built by the bottom up processes.
This includes, usually, only symbolic representations of the objects from the scene
without any description of their properties and relations. These are attached to the
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Table 9.4 Specialized AMBR agents

Fig. 9.7 Initial representation of the scene (bottom-up perception).

input of the model (in the example, object-1, object-2, and object-3). Later on, some
of the properties and relations, but only the relevant ones, would be dynamically
added to the representation.

The representation of the goal is attached to the goal node (usually find, AIBO,
bone). During the run of the system some initial correspondence hypotheses be-
tween the input (target) elements and some elements of the memory episodes (bases)
emerge via the mechanisms of analogical mapping (Figure 9.8).

The connected elements from the bases activate the relations in which they are
participating. The implemented dynamic perceptual mechanism creates predictions
about the existence of such relations between the corresponding objects in the scene.
As shown in the example of Figure 9.9, Object-1 from the scene representation
has been mapped onto Cylinder-11 in a certain old and reminded situation. The
activation mechanism adds to working memory some additional knowledge about
Cylinder-11 - e.g. that it is yellow and is positioned to the left of Cylinder-23, etc.
(Figure 9.9) The same relations become anticipated in the scene situation, i.e. the
system anticipates that Object-1 is possibly also yellow and could be on the left of
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Fig. 9.8 Creation of hypotheses (H1, H2, H3) on the basis of marker intersections.

Fig. 9.9 Formation of anticipation agents in AMBR on the basis of missing in the scene arguments
of already mapped relations. (Note that ’left-of’ relation is asymmetric and the order of arguments
is coded in AMBR although it is not shown in the picture)

the element, which corresponds to Cylinder-23 (if any), etc. However, some other
mappings between Object-1 and other memorized objects would trigger creations
of alternative anticipations. Thus, various anticipation-agents emerge during the run
of the system.

9.5.2 Attention

The attention mechanism deals with the anticipations generated by the dynamic
perceptual mechanism, described above. With a pre-specified frequency, the atten-
tion mechanism chooses the most active anticipation-agents and asks the perceptual
system to check whether the anticipation is correct (e.g. corresponds to an actual
relation between the objects in the scene). Middle layer, as described earlier, simu-
lates the perceptions of AMBR based on input from a real environment or simulated
one. It receives requests from AMBR and simply returns an answer based on the
available symbolic information from the scene.

The possible answers are three: ’Yes’, ’No’, or ’Unknown’. In addition to colours
(’color-of’ relations), spatial relations, positions, etc., it also generates anticipations
like ”the bone is behind ’object-1’”, or ”if I move to ’object-3’”, I will find the
bone”. Those relations play a very important role for the next mechanism - the trans-
fer of the solution (i.e. making a firm prediction on which an action will be based) -
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Fig. 9.10 Processing of the different types of answers of relation questions.

as explained below. After receiving the answers, AMBR manipulates the respective
agent (see Figure 9.10). If the answer is ’Yes’ it transforms the anticipation-agent
into an instance-agent. Thus the representation of the scene is successfully aug-
mented with a new element, for which the system tries to establish correspondences
with elements from old episodes in memory. If the answer is ’No’, AMBR removes
the respective anticipation-agent together with some additional anticipation-agents
connected to it. Finally, if the answer is ’Unknown’, the respective agent remains
an anticipation-agent but emits a marker and behaves just like a real instance, wait-
ing to be rejected or accepted in the future. In other words, the system behaves in
the same way as if the respective prediction is correct, because this prediction is still
possible. However, the perceptual system or the transfer mechanism (see below) can
discard it.

9.5.3 Transfer of the Solution

Thus, the representation of the scene emerges dynamically, based on top-down pro-
cesses of analogical mapping and associative retrieval and of the representation in
Middle layer and its functioning. The system creates many hypotheses for corre-
spondence that self-organize in a constraint-satisfaction network (see Figure 9.11)

Some hypotheses become winners as a result of the relaxation of that network
and at that moment the next mechanism - the transfer of the solution does its job. In
fact, the transfer mechanism does not create the agents, which represent the solution.
The perceptual mechanism has already transferred many possible relevant relations
but now the task is to remove most of them and to choose the best solution. As in
the previous examples, let’s take a target situation consisting of three cubes and let
the task of AIBO be to find the bone. Because of various mappings with different
past situations the anticipation mechanism would create many anticipation-agents
with a form similar to: ”The bone is behind the left cube” 1 This is because in a
past situation (sit-1 for example) the bone was behind the left cylinder and now

1 Note, however, this statement is not represent with a single DUAL-agent, but with a large coali-
tion of agents, following the main principles of the model. For purposes for simplicity only, often
larger coalitions are described in the text with single statements.
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Fig. 9.11 Constraint satisfaction network between hypotheses. Winner hypotheses remove many
of the inconsistent anticipations until only few anticipation-agents remain.

the left cylinder and the left cube are analogical. Because of the analogy with an-
other situation, for example, the anticipation that ”the bone is behind the middle
cube” could be independently created. Another reason might be generated due to
which the right cube will be considered as the potential location of the bone. Thus
many concurrent possible anticipation-agents co-exist. When some hypotheses win,
it is time to disentangle the situation. The winner-hypotheses care to propagate their
winning status to the consistent hypotheses. In addition, the inconsistent ones are
removed. In the example above, suppose that sit-1 happens to be the best candidate
for analogy. Thus, the hypothesis ’left-cylinder¡–¿left-cube’ would become a win-
ner. The relation ’behind’ from the sit-1 would receive this information and would
care to remove the anticipations that the bone can be behind the middle or behind the
right cylinder. As a final result of the transfer mechanism, some very abstract causal
anticipation-relations like ”if I move to the cube-1 this will cause finding the bone”
2 become connected with the respective cause-relations in the episodes (bases) from
memory via winner-hypotheses.

9.5.4 Action Execution

The final mechanism is sending an action command (see Figure 9.12). The cause-
relations that are close to the GOAL node trigger it. The GOAL node sends a special
message to the agents that are attached to it, which is in turn propagated to all cause-
relations. Thus, at a certain moment, the established cause-relation ”if I move to
cube-1, this will cause finding the bone” will receive such a message and when one
of its hypotheses wins, it will search in its antecedents for an action-agents. The

2 Represented as a part of the all memory - with one agent for the relation ”cause”, two agents for
its arguments ”move” and ”find”, respectively, other agents for the arguments of the arguments -
”I”, ”behind”, ”I”, ”bone”, etc.
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Fig. 9.12 Hypotheses of the cause-relations receive markers from the GOAL node. If the conse-
quents satisfy the goal, then the actions from the conditions are executed.

final step of the program is to request the respective action to be executed and this
is done again via a message to Middle layer.

9.6 Running the Simulated Model and Comparing It
with Human Data

In the first series of simulations we used only the simulated version of the robot
and the environment (Petkov et al., 2007), thus excluding perception and exploring
only the role of selective attention. The robot faces several objects in the room and
has to build their representation in its mind. Then the task of the robot is to predict
behind which object would the bone be and then finally to go to the chosen object
and check behind it ( Figure 9.13 )

Fig. 9.13 Find an object scenario in a simulated environment with Webots.
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We used Webots software to simulate the environment and the body of the robot.
Webots is professional mobile robot simulation software, which allows the simula-
tion of physics properties such as mass repartition, joints, friction etc. It is possible
to control the robot by setting the position of its body parts (with regard to the joints),
as well as to obtain information from the robot’s sensors. Each simulated robot can
be modeled individually. Webots comes with several models of real robots, like
AIBO and Pioneer. This enables transferring tested behavior to real robots. In addi-
tion, Webots allows connection with external software modules. The results so far
include:

• creation of worlds with physical laws
• creation of object with any shape
• creation of robots and endowing them with behaviour (i.e. programming their

behaviour).

Thus there is a representation building part of the model, which target representation
is then used for recalling an old episode which could be used as a base for analogy, a
mapping between the base and the target is built, and the place of the hidden object
in this old episode is used for predicting the place of the hidden bone in the current
situation. Finally, a command to go to the chosen object is send. It is important to
emphasize that all these processes emerge from the local interactions of the micro-
agents, i.e. there is no central mechanism that calculates the mapping or retrieves
the best matching base from memory. In the simulations described here the AIBO
robot had four specific past episodes encoded in its memory, presented in Figure
9.14 . In all four cases the robot saw three balls and the bone was behind one of
them. The episodes vary in terms of the colors of the balls involved and the position
of the bone.

Fig. 9.14 Old episodes in the memory of the robot (different colors are represented with different
textures).

The robot was then confronted with eight different new situations in which it had
to predict where the bone might be and to go and check whether the prediction
was correct (Figure 9.15). The situations differ in terms of colors and shapes of the
objects involved.

In Figure 9.16 one can see the representation of the target situations that is ex-
tracted from the description of the simulated environment. (Representation build-
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Fig. 9.15 New tasks that the robot faces.

ing for perceived real environment is described in the next section.) For the first
series of simulations, however, the representation involves relations known to the
robot such as color-of (object-1-sit001, red1), same-color (object-1-sit001, object-
3-sit001), unique-color (object-2-sit001), right-of (object-2-sit001, object-1-sit001),
instance-of (object-1-sit001, cube), etc. . The relations are in turn interconnected in
a semantic network. For example, same-color and same-form are both sub-classes
of the higher-order relation same.

In the simulations described above the attention of the robot was simulated by
connecting only some of these descriptions to the input list which results that even
though all relations, properties, and objects will be present in the Working Mem-
ory (WM) of the robot, only some of them will receive external activation and thus
will be considered as more relevant. Thus different simulations with the same situ-
ation, but focusing the attention of the robot towards different aspects of the given
situation, could result in different outcomes.

Fig. 9.16 Representation of the target situations 1 and 2.

In each case there could be various solutions: different analogical bases could be
used on different grounds and in some cases for the same base several different
mappings could be established that will lead to different predictions (See Figure 9.17
and Figure 9.18 for the specific mappings established and the predictions made).
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Fig. 9.17 Examples of mappings established with changing the attention from form (a) and (b) to
color (c) and (d).

Fig. 9.18 Examples of mappings based on the superficial color relations

9.6.1 Comparing with Human Data

After running the first series of simulations several times varying only the focus of
attention to see whether the mapping changes; we conducted a psychological ex-
periment. We showed the bases to the participants, changing the AIBO robot and
the bone with a cover story about a child who has lost its bear-toy. We asked the
participants to predict where the bear-toy would be in the given new situation. The
data from the human experiment are given in Figure 9.19a. As one can see there
is a variety of answers for almost each target situation. Still there are some domi-
nating responses. In order to be able to test the robot’s behavior against the human
data, 50 different knowledge bases have been created by a random generator that
varies the weights of the links between the concepts and instances in the model .
After that the simulation has been run with each of these knowledge bases in the
”mind” of the robot.Figure 9.19b reflects the results. They show that the model has
a behavior which is quite close to that of the participating human subjects in terms
of the dominating response. The only major difference is in situation 2 where hu-
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Fig. 9.19 Comparing human and simulation data: which base has been used for analogy with each
target situation and how many times.

man subjects are ”smarter” than AMBR: they choose an analogy with situation D
(same-form goes onto same-color) much more often than AMBR. Still AMBR has
produced this result in 25% of the cases. This means that AMBR is in principle able
to produce this result, but it would requite some tuning of the model in order to
obtain exactly the same proportion of such responses.

9.7 Running the Real Robot Model in the Real World

As in the simulated version we define our tasks and test the model in a house-
like environment and in a ”find-an-object” scenario. There is one room with some
objects in it. The objects vary in shape- cubes , cylinders and in colors. We used
Sony AIBO robots (ERS-7). The goal of the robot is to find a bone (or bones) hidden
under an object. All objects are visible for the robot. (Figure 9.20).
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Fig. 9.20 Real world scenario -”Where is my bone?”.

The AIBO robot has to predict where the bone is hidden based on analogies with
past episodes and go for it. The episodes are manually built for the moment, but we
work on the learning process by which the newly perceived situations will remain
in LTM.

In order to simplify the problems related to 3D vision we decided to have one
camera attached on the ceiling having a global 2D view of the scene. There is a
colour marker on the top of the AIBO to facilitate its recognition. A web camera
server sent the image data via TCP/IP to the network camera module of IKAROS.
All software is run on remote computers and communicate with the robot through
wireless network.

In order to connect AMBR with the real world several new modules were devel-
oped (Kiryazov et al., 2007). A major step was to build a real world perceptive mech-
anism with active vision elements. Several modules of IKAROS system (Balkenius
and Moren, 2003), (Balkenius et al., 2007), (Kiryazov et al., 2007) related to percep-
tion were successfully integrated in order to carry out the difficult task of bottom-up
visual perception and object recognition. Another module - AMBR2Robot - was
developed to mediate between the perception modules of IKAROS and ABMR.
AMBR2Robot supports the selective attention mechanisms, which were described
above.

The resulting architecture consists of the following modules (see Figure 9.21):

• AMBR - the core of the system, it is responsible for attention and top-down
perceptual processing, for reasoning by analogy, for decision making, and for
sending a motor command to the robot controller.

• IKAROS module - a low-level perception module performing bottom up infor-
mation processing.

• AMBR2Robot - a mediation module, the link between AMBR and IKAROS and
the robot controller.

• AIBO robot.
• Camera attached to the ceiling.
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The camera takes visual information of the environment. It is received by the
IKAROS module. The visual information is processed and symbolic information
about objects in the environment is produced. This symbolic information is used
from ABMR2Robot to provide AMBR with bottom-up perception information and
also to handle the top-down requests which are described below. ABMR2Robot
also waits for a ”do-action” message from AMBR, which when received makes the
module to control the robot and guide it to the target position using AIBO Remote
framework. AMBR does the substantial job of making predictions about where the
bone is hidden based on the representation of the current situation and making anal-
ogy with past situations. AIBO Remote Framework is a Windows PC application
development environment which enables the communication with and control of
AIBO robots via wireless LAN.

Fig. 9.21 Main modules and data flow between them

The newly developed modules are described in details below.

9.7.1 Ikaros

IKAROS is a platform-independent framework for building system-level cognitive
and neural models (Balkenius and Moren, 2003), (Balkenius and Johansson, 2007)
(see also www.ikaros-project.org). The system allows systems of cognitive modules
to be built. The individual modules may correspond to various cognitive processes
including visual and auditory attention and perception, learning and memory, or
motor control. The system also contains modules that support different types of
hardware such as robots and video cameras. The modules to be used and their con-
nectivity are specified in XML files that allow complex cognitive systems to be built
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by the individual modules in IKAROS. Currently, there are more than 100 different
modules in IKAROS that can be used as building blocks for different models.

In the present work, IKAROS was used for visual perception and object recog-
nition . An IKAROS module receives images from a camera while another mod-
ule segments the image into different objects based on colour. The result is sent to
AMBR2Robot for further processing.

The object recognition module proceeds in the following stages:

1. RGB image is mapped onto RG- chromacity plane to reduce effects of different
illuminations and shadows on the objects.

2. Edge filter is applied to find the contours of the objects.
3. Colours of the image are normalized between edges to produce homogenous

colour regions (Figure 9.22 ).
4. Pixel are segmented into clusters with different colours (each colour is defined

as a circle sector around the white-point in the RG-chromaticity plane) (Figure
9.22 ).

5. Each object is localized in a rectangular region. A histogram of edges direction
is produces in that region. The histogram is processed to find the object shape
(Figure 9.23 ).

Fig. 9.22 Left. An initial image. Middle. Colours after normalization between edges. Right. A
colour region in the RG-chromaticity plane

Fig. 9.23 The recognition of shapes. Left. A region is formed around the colour cluster. Middle.
A histogram of edge orientations is calculated. Right. The distribution of edge orientations is used
to determine the shape.
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Note that we are not trying to find the complete contours of the objects. Instead,
the method is based on the distribution of different edge orientations which is a
much more robust measure. The different processing stages were inspired by early
visual processing in the brain but adapted to efficient algorithms. The mapping to
the RG-chromaticity plane discards the illuminant and serves the same role as the
interaction between the cones in the retina (Dacey, 1996). The detection of edges
is a well known function of visual area V1 (Hubel and Wiesel, 1968). The colour
normalization within edge elements was inspired by theories about brightness per-
ception (Paradiso and Nakayama, 1991) and filling-in (Grossberg, 2000).

9.7.2 AMBR2Robot

AMBR2Robot provides AMBR with perceptual information from IKAROS and
also serves for implementing the selective attention mechanism in the model. The
other main purpose of this module is receiving the action tasks from AMBR and
executing them using AIBO-RF. We could say that it simulates the link between the
mind (AMBR) and the body (perception system, action system). The work of the
module AMBR2Robot formally can be divided into three sub- processes:bottom-up
perception, top-down perception, performing actions.

Bottom-Up Perception

At this stage just a small part of the scene-representation is sent to AMBR. As de-
scribed above information is further transformed into the form used for knowledge
representation in AMBR by creating a set of AMBR agents with appropriate slots
and links and connecting them to the so-called input of the architecture.

Top-Down Perception

As mentioned above AMBR sends top-down requests in the form of questions about
the presence of properties and relations about the identified objects. These requests
are received by AMBR2Robot and are answered based on visual symbolic infor-
mation provided by IKAROS. Relations represent the most important information
for analogy-making and are extracted by AMBR2Robot from the scene description
which does not contain them explicitly but only implicitly (e.g. in the form of coor-
dinates and not spatial relations).

The main types of top-down perception requests are for:

1. spatial relations: right-of, in-front-of, in-front-right-of, etc. . . .
2. sameness relations: same-colour, unique-shape, etc. . . .
3. colour properties: orange, blue, red, etc. . . .

The spatial relations are checked based on the objects’ positions as described by
their coordinates and size and with respect to the gaze direction of the robot. Figure
9.24 shows how the above example relation request (left-of object-2 object-3) is
processed. Positions of all objects are transformed in polar coordinates respective to
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Fig. 9.24 Processing the spatial relation requests.

a robot-centric coordinate system. Then some comparison rules are applied to the
coordinates. For processing the sameness relation the relevant properties (shape or
colour) of all the visible objects are compared.

Action

AMBR2Robot receives action commands from AMBR and, knowing the positions
of the target object and the robot, navigates AIBO by sending movement commands
via the AIBO Remote Framework (see Figure 9.21). During the executed motion,
IKAROS is used to update the objects’ position in the scene (actually all object ex-
cept the robot are stationary) The robot is guided directly to the target object without
any object avoidance (to be implemented in the future in more sophisticated exam-
ples). After the robot has taken the requested position, it is turned in the appropriate
direction to push and uncover the target object. At the end it takes the bone if it is
there or it stops otherwise.

9.7.3 Tests

The results from a single run of the system will be described below. There are two
past situations in the robot’s memory (Figure 9.25a) The robot faces the situation
showed in Figure 9.25b

The image (from the global camera) is sent to the IKAROS module. In Figure
9.26 the visual field after RG-chromaticity transformation and the edge histogram
for the one of the recognized objects are shown.

The IKAROS module recognizes the objects and produces the input:
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Fig. 9.25 (a) Old episodes in memory (b)AIBO is in a room with three cubes with different
colours.

Fig. 9.26 (a),(b) RG-chromaticity transformation (c)Edge histogram for the upper cube

Processing that information AMBR2Robot sends part of it as bottom-up perceptual
information to AMBR:

In the top-down perception part, lots of relation requests are generated from AMBR.
Here we show some of them, including the answers from AMBR2Robot:
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Some of the already created anticipation agents are turned into instance agents ac-
cording to the answer:

The name of the agents is formed as follows. ’anticip’- stands for anticipatory .
After that follows the name of the relation which it ”anticipates”. This relation can
belong to one of the situations in robots memory (situation-1 or situation-2 in this
case) Note that after transforming an anticipation agent into instance one its name
remains the same. After some time AMBR make an analogy with situation-1. Some
of the winner hypotheses (in the order they emerge) are:

Many other agents are mapped. After the mapping of the cause agent, the action
mechanism is triggered, which sends a motion command to AMBR2Robot.

AMBR2Robot guides the robot to the target. Once arrived, the robot uncovers the
object and tries to get the bone. Figure 9.27 shows some images of the robot moving.

9.8 Mechanisms for Active Vision

Dynamic Representation of the Objects

A step toward improving the model would be to create more plausible mechanism
for attentual moving. In the current version of the system it is assumed that all
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Fig. 9.27 1. AIBO is starting to move. 2. approaching the target. 3. uncover object. 4. get the bone

objects are pre-attentively and simultaneously represented. Thus, actually, the ob-
jects serve for primitives of the system. This unrealistic assumption should be re-
placed with a system for gradually context-dependent exploration of the objects in
the scene, together with the relations between them. Thus, some objects that are
outside of the robot’s visual angle, as well as the occluded objects should be not
initially represented. (Figure 9.28)

Fig. 9.28 Filtering the visual field related to robots first point of view

Bottom-Up Perception

The coin, however, has its opposite site too. By making the initial scene representa-
tion poorer and poorer, the overall behavior becomes more and more dependent on
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the goals only. Without decreasing the importance of the top-down processes in vi-
sion, some direct bottom-up mechanisms for perceptual grouping should be added,
as well as their interaction with the top-down processes should be studied.

Active Vision

The ability to robot to move continuously and the dynamic of the input information
makes the process more complex and difficult to be implemented. Sometimes, how-
ever, probably the additional constraints can make the problems easier to be solved.
For example, in the case of an object, partially occluded from another object, recog-
nition is impossible from the static two-dimensional picture. On the contrary, if the
robot moves, the task can be much easier. Thus, an important step for improving the
system should be to design more action plans for vision only and additional usage
of the influence on actions on reasoning and perception.

9.9 Discussion and Conclusion

This chaper presented an integrated approach to anticipation starting from perceiv-
ing the scene all the way down to making a decision and undertaking an action. In
this case the anticipation is based on analogy with a previously experienced situa-
tion. This is a new approach to anticipation and at the same time a new challenge
for the AMBR model of analogy-making which has been extended with new mech-
anisms related to perception and anticipation which are integrated into the whole
architecture and following the same basic principles.



Chapter 10
Anticipation in Coordination

Maurice Grinberg and Emilian Lalev

10.1 Introduction

The games defined in formal game theory (like e.g. the Prisoner’s Dilemma game)
are widely used to model social interactions (Colman, 2003). Recently, several in-
fluential research efforts (e.g. Axelrod (1984) and Epstein and Axtell (1996)), based
on Multi-Agent Simulations (MAS), have been carried out successfully in order to
explain (and even try to influence) such important aspects of societies like cooper-
ation and competition. The typical framework of such approaches consists of the
use of simple agents interacting with an environment via simple rules or game play-
ing. Although the phenomena arising in such environments are important enough to
deserve detailed investigation, we have adopted a different approach here. We have
been interested in cognitively plausible agents whose performance can be compared
against experimental data from human participants.

The use of cognitively sophisticated agents can be regarded as a development of
the opposition of standard game theory and the bounded rationality framework (Col-
man, 2003). In standard game theory, players are described as perfectly rational and
possessing perfect information about the game including knowledge about the pos-
sible moves and payoffs, and opponents. On the other hand, the bounded rationality
view on cognition states that people are almost never perfectly rational (Colman,
2003) due to limitations in perception, time, thinking, and memory. Moreover, peo-
ple tend to minimize the cognitive effort while making decisions. Finally, the results
of experiments involving games demonstrate that people rarely play as prescribed
by the normative game theory. One such famous example is the Prisoner’s Dilemma
(PD) game which will be dealt with in this Chapter.

The influence of cognitive constraints and mechanisms on decision making in the
Iterated Prisoner’s Dilemma Game (IPDG) and thus on the simulations describing
social interactions has been studied for instance in a series of investigations (see
Hristova and Grinberg (2004) and Lalev and Grinberg (2007) and the references
therein). Moreover, the use of of cognitively plausible agents can insure that the in-
formation gained by using them in simulations of complex social interactions will
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take into account specific cognitive mechanisms which are essential for the expla-
nation of the phenomena observed.

One such cognitive mechanism is anticipation and its role in explaining cooper-
ation and coordination will be the focus of our results and discussions in this Chap-
ter. Special attention will be devoted to the use in MAS of the anticipation model
proposed by Lalev and Grinberg (2007), where the role of anticipation on coopera-
tion in IPDG has been investigated. The detailed analysis of the model features and
the comparison with previous experiments with human participants demonstrated
the importance of prediction for adequate description of the behavioral data on co-
operation. These results were obtained in the experiments and in the theoretical
frameworks by using individual playing against a tit-for-tat opponent focusing on
individual decision making. Here, we want to present results which demonstrate the
role of anticipation in small societies of agents. The key characteristics monitored
will be cooperation and coordination as related to the essence of social interaction
as discussed in other chapters of these book.

10.1.1 The Prisoner’s Dilemma Game

The Prisoner’s dilemma is a two-person game and a famous example of a social
dilemma game. The payoff table for this game is presented in Table 10.1. The play-
ers simultaneously choose their move - C (cooperate) or D (defect), without know-
ing their opponent’s choice.

Table 10.1 Payoff table for the PD game. In each cell the comma separated payoffs are the Player
I’s and Player II’s payoffs, respectively.

In Table 10.1, R is the payoff if both players cooperate (play C), P is the payoff if
both players ”defect” (play D), T is the payoff if one defects and the other cooper-
ates, S is the payoff if one cooperates and the other defects. The payoffs satisfy the
inequalities T > R > P > S and 2R > T + S. This structure of the payoff matrix of
that game offers a dilemma to the players: there is no obvious best move. The dom-
inant D move (T > R and P > S) would lead to lower payoffs if adopted by all the
players (payoff P) although this is the choice prescribed by standard game theory.
Cooperation seems to be the best strategy in the long run (R > P) but at the risk of
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one of the opponents to start to defect and the other to receive the lowest payoff S.
This quite complicated situation is at the heart of the dilemma in this game and is the
reason for the on-going interest in this game over the past 50 years and continuing
today. The importance of the possibility to predict the opponents’ moves is obvi-
ous especially in the iterated version of the game. Reliable prediction would lead in
some cases to trust in the opponent and higher cooperation while in other cases to
’punishment’ of expected defection. In any case, anticipatory agents playing IPDG
will be involved in specific interactions, which have to be investigated.

Rapoport and Chammah (1965) proposed the quantity CI = (R-P)/(T-S), called
cooperation index, as a predictor of the probability of C choices, monotonously
increasing with CI. In Table 10.2, two examples of PD games with different CI 0.1
and 0.9, respectively are presented.

Table 10.2 Examples of PD game matrices with different CI - 0.1 and 0.9, respectively. The first
payoff in each cell is the payoff of the ’row’ player and the second of the ’column’ player.

10.2 Related Research

A common assumption is that, in the long run, people build mental models of them-
selves and of other people they interact with. Such models include grasping typical
aspects of their behavior and this may result in establishing relations of trust or dis-
trust. It is also agreed that more or less pure instances of IPDG can be observed
in real-life social relations. As long as these relations matter for the well-being of
people, they try to make models of the other players and of the environment. These
models are guided by past experience and the actions assigned to interactions com-
ply with predictions about the other agents’ actions. In other words, past experience
and predictions about events based on this experience are factors which cannot be
neglected in the understanding of human social interactions (e.g., Leydesdorff and
Dubois (2004)).

In simulated societies of anticipatory agents, effects of the social interactions
such as reputation formation and strategic teaching in social dilemmas (Camerer
et al. (2002), Taiji and Ikegami (1999), Isaac et al. (1994)), or coordination between
agents (Dittrich et al., 2003) were observed. Leydesdorff and Dubois (2004) gave
examples of how information and meaning processing become interweaved in a
society of very simple agents with anticipatory capabilities.
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10.2.1 Fictitious Play

Awareness of the presence of an opponent in IPDG consequently implies that the
player tries to make a model of the opponent’s strategy which leads to a more com-
plicated behavior related to attempts to utilize this model (see Sutton and Barto
(1981a)). Provided players are able to predict the opponent’s move, they may want
to maximize their payoff by choosing the most profitable move given the predicted
opponent’s move by fictitious play (Brown, 1951). Fictitious play is a behavior in
which a player evaluates reinforcements from situations that did not actually hap-
pen but were only imagined (see Camerer and Ho (1999)). Agents choose to play
the action (i.e., the pure strategy) that maximizes their expected payoff given their
estimate of the opponent’s strategy (Lipson and Leyton-Brown, 2006).

Fictitious play may refer to the past interactions with the opponent like in
Camerer and Ho (1999). In this case, its purpose is to explore possible strategies
that may have earned higher foregone rewards. Provided fictitious play refers to the
future of game interactions, it serves for the players to make the optimal decision
about their future behavior like in Taiji and Ikegami (1999).

MAS with a variety of reinforcement learning agents (conducted by Asher Lip-
son and Kevin Leyton-Brown, 2006) revealed that fictitious play agents were best at
converging to a Nash equilibrium (Lipson and Leyton-Brown, 2006).

10.2.2 Strategic Teaching and Reputation Formation

When players assume their opponents are adaptive and are influenced by their strat-
egy, players may try to create reputation for themselves (Camerer et al. (2002), Taiji
and Ikegami (1999)). Reputation can be thought of as an incentive to guide the co-
ordination between two interacting agents. Reputation in social dilemmas is a kind
of abstract resource during iterated play. It assures that the players on the other side
will behave well as it is a factor for higher cooperation rates.

Reputation may also be considered a currency to other games (Milinski et al.,
2002) that are played in an alternating mode at the same time by the same players.
The knowledge of being recognized as the same individual in both scenarios moti-
vates players to invest in their reputation. Sophisticated relations, including theory
of mind and reputation formation, are related to anticipation in decision making
(Rosen, 1985). They provide explanation of cooperation in IPDG based on forward-
looking decision-making.

A model that uses reputation is the Experience-Weighted Attraction (EWA)
model (Camerer and Ho, 1999) in its ”sophisticated” version. The EWA model com-
bines elements of two approaches. First, realization of the belief learning approach
in EWA includes considering foregone fictitious play payoffs. The second approach
in EWA is the standard reinforcement learning.

In the sophisticated EWA (Camerer et al., 2002), players use this model to fore-
cast what the other players will do and choose strategies with high expected payoffs
given their forecast. Because the model assumes that sophisticated players think
others are sophisticated (and those others think others are sophisticated, ...), it cre-
ates a whirlpool of recursive thinking which nests equilibrium concepts (Camerer
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et al., 2002). Sophisticated players playing iteratively with the same opponents usu-
ally have an incentive to ”teach” adaptive players by choosing strategies with poor
short-run payoffs which will change what adaptive players do, in a way that bene-
fits the sophisticated player in the long run. This ”strategic teaching” gives rise to
repeated-game equilibria and reputation formation behavior through the interaction
between the players (Camerer et al., 2002).

Another example of reputation formation may be seen in the the Best-response
with signaling (BRS) model that was suggested by Isaac et al. (1994) for the play
in the Public Goods social dilemma game. It incorporates rational decisions with
features of forward-looking best-response and signaling of cooperative intentions.
According to the BRS model, players may benefit from signaling their cooperative
intentions to other players. Signaling is an increase in the cooperation rate of a
player, and it serves to propose to the opponents to cooperate more in oncoming
games.

Taiji and Ikegami (Taiji and Ikegami, 1999) proposed a connectionist model ar-
chitecture especially designed to investigate cooperation among anticipatory players
in IPDG. Strategic teaching and reputation formation naturally emerge in the model
provided that it possesses first or second order intentionality. The model is able to
recognize the dynamics of the opponent’s strategy, and to make predictions about
the opponent’s future moves with the help of a dynamic recognizer (Pollack, 1990).
Therefore, it has an internal model of its opponent and uses it in predicting its be-
havior.

The model of Taiji and Ikegami exists in two versions which are called ”Pure
Reductionist Bob” and ”Clever Alice”. Pure Reductionist Bob anticipates the oppo-
nent’s strategy by the dynamic recognizer. He believes that the opponent behaves
according to simple algorithms like finite automata and is trying to infer these algo-
rithms from her behavior.

Clever Alice in turn assumes that the opponent behaves like Pure Reductionist
Bob. She knows that the opponent is making her model and he decides the next ac-
tion based on that model of hers. In other words, she builds the model of herself and
treats this model as her image in the opponent. In order to decide the player’s next
action, a prediction of the opponent’s future action based on the dynamic recognizer
apparatus is used in both versions of the model. The algorithm of Pure Reductionist
Bob is that he chooses his forward actions up to several fictitious future games. He
can predict the opponent’s actions from his forward actions, and the expected score
is evaluated. The process is repeated for all possible strings of actions of a given
length and Bob chooses the action with the highest score as the best action.

Clever Alice chooses her forward actions and predicts the opponent’s actions
assuming that he behaves like Pure Reductionist Bob. Again the process is repeated
for all possible variations of future strings of C and D moves and she chooses the
action string with the highest score as the best one. In other words, she predicts her
image in the other person and tries to educate him to have a favorable image of her
through her actions.

In simulations where the model played against the same model (not against sim-
ple computer strategies), the IPDG play always converged to mutual defection after
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some time. In other words, in this case anticipation was not of help for players to
play cooperatively in the long run. However, the model managed to discover the
cooperation strategy as the most profitable one against a Tit-For-Tat computer op-
ponent.

10.2.3 Social Order and Coordination

A key concept for Dittrich et al. (2003), that used communicating agents to model
and simulate the origin of social order, is the situation of double contingency (Luh-
mann, 1984). Social structures, social order, or social systems are first of all struc-
tures of mutual expectations. Every entity expects that the other entity has expec-
tations about its next activity (Dittrich et al., 2003). There are two factors into the
decision process of an agent in their simulated societies: The first is its expectation
about the future and the second is its expectation about the other agent’s expecta-
tion (called ”expectation-expectation” by Luhmann (1984). Simulation experiments
of the model reveal that social order (coordination) appears as a rule in the dyadic
situation. In this case, agents succeed to establish good coordination between each-
other.

On the other hand, in a population of many interacting agents, the order usually
disappears. Scalable order in larger societies only emerges for very specific cases.
One case is if agents generate expectation-expectations based on the activity of other
agents, not only on their own activity. A second case is if there is observation of
others (Dittrich et al., 2003).

Coordination in the society can lead to the transition from a more actor-oriented
perspective of social interaction to a systems-level perspective.

10.2.4 Anticipation and Information Processing in Societies

With much simpler anticipatory agents Leydesforff (see Leydesdorff and Dubois
(2004) and Leydesdorff and Dubois (2004)) managed to demonstrate complicated
effects and derived inferences about information processing in the society. The idea
implemented is that anticipation is a process opposite to recursion called incursion
(Dubois, 1998). The direction of this process is opposite to the time line - the pre-
dicted state influences the current one. Agents, due to their anticipatory properties,
may choose one of two paths when they appear in a bifurcation. Such behavior re-
sembles the binary choice decisions made by agents in IPDG (Lalev and Grinberg,
2007). Thus, the degree of insecurity in the whole system is reduced.

Leydesdorff and Dubois (2004) defines two contradictory couples of entities:
recursion and information versus incursion and meaning. In social anticipatory sys-
tems, observations and expectations can be exchanged between agents. The meaning
of the current action of an agent becomes evident through anticipation. Meaning is
provided to observations from the perspective of hindsight, while information pro-
cessing follows the time axis (Leydesdorff, 2005).
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10.3 Agent Architecture and Decision Making Model

Most of the models presented above are quite schematic and rely on specific pre-
specified mechanisms. From a cognitive modeling point of view the challenge is to
understand the decision making mechanisms that would lead to the results observed
in the experiments with human participants taking account all of the important char-
acteristics (e.g. the dependence of cooperation on CI or of cooperation on the level
of predictive capabilities). We are convinced that an adequate agent model should
have a minimal but sufficient level of complexity and should perform in a environ-
ment similar to the environments of human experiment participants (e.g. they should
perceive the payoff matrix of the game before making a move and take into account
the opponent’s moves and game outcomes). In the same time human players rely on
past experience and on predictions of future events.

The model presented here, following Lalev and Grinberg (2007), is aimed at
complying with these requirements. It has taken into consideration the results from
extensive recent theoretical and experimental research on the cognitive processes in-
volved in decision making in IPDG (see Hristova and Grinberg (2004) and Lalev and
Grinberg (2007)) using different approaches involving psychological experiments,
eye-tracking studies, and modeling and simulations.

10.3.1 The Model

The core architecture of the model (hereafter referred to as Model A following Lalev
and Grinberg (2007)) is an Elman recurrent neural network (Elman, 1990) depicted
in Figure 10.1. In Taiji and Ikegami (1999), a recurrent network has also been used
to model the behavior of PD game players. However, the model used here has a
much more complicated structure and includes as input the game payoff matrix,
the players’ previous moves and the received payoffs (related to the specific last
game outcome). The network consists of eight inputs, thirty hidden-layer, and six
output nodes (see Figure 10.1). The activation functions of the hidden layer and of
the output layer are tan-sigmoid and log-sigmoid functions, respectively. Because of
the logistic output activation function, some of the network’s outputs are interpreted
as probabilities.

Inputs and Outputs All the inputs of the network were rescaled to be within the
range [0, 1]. As can be seen from Figure 10.1, the values of the payoffs from the
current game matrix (excluding the payoff S which was always zero in this specific
set of games, taken to be the same as the one in the experiment), as well as the
payoff received in the past game, the player’s and opponent’s moves in the previous
game were presented at the input nodes at each cycle.

The past moves were recoded as [0,1] - for C and [1,0] - for D moves, so that
activation would always come from any of the two couples of input nodes, no mat-
ter what the moves were - C or D. The values of the T, R, and P payoffs from the
current game had to be reproduced as an output by the model thus implementing an
in-built auto-associative memory. There were two reasons to decide to include this
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Fig. 10.1 Schematic view of the recurrent neural network and its inputs and outputs/targets. No-
tation: Sm and Cm are respectively the simulated subject and computer opponent (probability for)
moves; Poff(t) is the model’s received payoff at time t.

component in the network architecture. The first was to force the network to estab-
lish representations of the games in its hidden layer which are supposedly crucial
to account for the game payoff structure in the decision making process. The sec-
ond one was related to the anticipatory decision mechanism of Model A where the
output nodes concerning T, R, and P were used as predictions of the possible game’
payoffs in the fictitious playing mechanism explained later.

At the output, the player’s move (’Sm’ node) and the computer-opponent’s move
(’Cm’ node) nodes were interpreted as the probability for cooperation for the player
and the prediction about the probability of cooperation of his/her opponent in the
game at hand. The payoff (’Poff’) node represented the expected gain from the
current game.

Training PD games with varying CI - from 0.1 to 0.9 - were presented to the neu-
ral network (T was always equal to 1, and S was always 0, R and P were distributed
in this interval depending on the CI of a particular game). The games were random-
ized with respect to CI in the same way as in the experiments with human partic-
ipants (see Hristova and Grinberg (2005b) and Hristova and Grinberg (2005a)) in
order to allow for the comparison with experimental results (see Section 10.4). The
network was trained using back-propagation on an input consisting of sequences
of overlapping five games - the current game and the four previous games. Such
sequences are further called micro-epochs.

In the very beginning of the IPDG, the length of micro-epochs was increasing
with each next completed game until it reached five games. The very first inputs
were as follows: the first game matrix, the player’s move and the prediction of the
opponent’s move generated with probability 0.5. The first received payoff (’Poff’)
was obtained from the averaging of the payoffs of the games.

The small number of games the network dealt with at a time implies sensitivity
to local changes in the game and to memory constraints we assumed to exist in



10 Anticipation in Coordination 223

real game playing. On the other hand, the micro-epochs were long enough so that
specific events in the history of IPDG were encoded in the recurrent hidden layer.

The values at the six output nodes were used as predictions when the network
was trained within the current micro-epoch. The ’T’, ’R’, and ’P’ output nodes were
expected to reproduce the corresponding input values in the input payoff matrices.
The output of the ’Sm’ node was the model-player’s probability for cooperation in
the current game. The output at the node ’Cm’ was the prediction for the cooperation
probability of the opponent, and the output at the ’Poff’ node meant the expected
game payoff. When both, player and opponent had made their moves and the target
values for the output layer were known, the new target micro-epoch was updated and
the network was trained. For all of the output nodes the training signal is supplied
by the game (payoffs) with the exception of the model-player’s move probability.
The latter has to be supplied either from experimental data with a human player (if
the model is used to fit the behavior of a real player) or by explicitly modeling the
evaluation of the game outcome. Here, we will present results along the latter line.

10.3.2 Judgment and Decision Making

In order to build a realistic model able to make decisions comparable to the ones
made by human subjects, we need a good evaluation mechanism for the outcomes
of the player’s moves. Hereafter, we present the mechanism adopted in Lalev and
Grinberg (2007) which implements fictitious playing based on predictions of the
recurrent network used in received payoff maximization.

The model uses the predictive properties of the recurrent network in order to
”guess” how the game would proceed if its current move were either C or D. An
anticipatory module was implemented in the model, so that two sequences of five
games predicted by the neural network were produced before making a move. The
first sequence began with a C move, and the second one with a D move. Only the
first player’s move was fixed in any sequence (C or D, respectively). The recurrent
network had as first inputs the current game input (together with the other four
games from the micro-epoch) including the values of the T, R, and P payoffs, and
the players’ moves and payoff from the previous game. This is a simpler mechanism
than the one used in Taiji and Ikegami (1999), where all the possible strings of C
and D moves are taken into account. Here the first move is chosen and everything
else is based on the network predictions.

As the player’s move is known in the first fictitious game (C or D), the opponent’s
move is generated with the probability predicted by the network. The payoff for the
player is based on the moves of both players according to the rules of PD game and
the payoffs T, R, P or S as obtained on the output layer.

In the second fictitious game the input micro-epoch is updated so that the new T,
R, and P values are taken from the output layer of the neural network and considered
as predictions about the fictitious game payoffs. The ’Poff(t-1)’ node activation gets
the value of the fictitious payoff from the previous game and the previous moves
nodes (the ’Sm(t-1)’ and ’Cm(t-1)’ nodes) activations were the fictitious previous
game moves. In the next iterations everything is repeated as in this but using the
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player move generated with its predicted probability at the output layer and not a
fixed move as in the first iteration.

In this way, the work cycle is complete and the model can predict several future
games and related moves and outcomes. Then the payoffs from both sequences -
PoffC for initial move C and PoffD for initial move D - are considered. The obtained
payoffs from the five fictitious games for each initial move choice were evaluated
using a discount factor as follows:

where PoffC,D(t) is the value of the payoff at moment t, for initial move C or D and
β is the usual discount parameter that indicates to what extend the remote future
game payoffs are important for making decisions at present. If β is 0, only the first
fictitious payoff would matter, and if β was 1, all the five payoffs will be considered
as equally important. Further the quantities PoffC and PoffD are normalized so that
their sum is equal to one preserving the ratio between them. The probability for
cooperation for the current move of the model is then calculated using a soft-max
function:

where P(C)is the calculated cooperation probability and k is a parameter for the
sensitivity of the function to the difference between PoffC and PoffD. Smaller value
of k correspond to larger sensitivity to the difference between the C and D alternative
choices.

10.4 Game Simulations with Individual Agents:
Comparison with Experimental Results

In this Section the most relevant results from Lalev and Grinberg (2007) will be
presented as they are the basis of the MAS simulation presented in Section 4.

10.4.1 Comparison of the Model with Experimental Results

The agents play individually against a probabilistic Tit-for-two-Tats (Tf2T) com-
puter strategy. Their moves depend on the player’s two previous moves, thus being
adaptive to their temporal cooperativeness without being easily predictable. The
computer opponent probability for cooperation thus obtained is respectively: 0.5 for
[C, D] and [D, C], 0.8 for [C, C], and 0.2 for [D, D]. This choice of a computer
opponent is the as the one in the experiments reported in (Hristova and Grinberg,
2004) and allows for a comparison with the experimental results.
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The results presented in this section are based on 30 IPDG sessions of two-
hundred games against the Tf2T computer strategy. For the comparisons with the
experiment the first 50 games are taken to match the number of games played by
human participants (see Hristova and Grinberg (2004)). From the experiment re-
ported in Hristova and Grinberg (2004), only data from the first part and for the
control condition was used in the comparison. In this experiment (see Hristova and
Grinberg (2004) for details) 30 participants played 50 PD games against the com-
puter opponent described above. After each game the subjects got feedback about
their and the computer’s choice and could permanently monitor the total number
of points they had won and its money equivalent. The subjects received informa-
tion about the computer’s payoff only for the current game and had no information
about the computer’s total score. This was made to prevent a possible shift of sub-
jects’ goal - from trying to maximize the number of points to trying to outperform
the computer. In this way, the subjects were stimulated to pay more attention to the
payoffs and their relative magnitude and thus indirectly to CI. Games of different
CI, ranging from CI = 0.1 to CI = 0.9, were presented both to participants and in
simulations with models A and B. Games were coming at random regarding their CI.

The best fit of the experimental results was obtained with the following parame-
ters (see eqs. (1) and (2)): β = 0.7 and k = 0.05.

10.4.1.1 Mean Cooperation and Payoffs

The results for the mean cooperation and payoffs for the model and human partici-
pants’ experimental data taken from Hristova and Grinberg (2004) are respectively
presented in Figures 10.2 and 10.3. No statistically significant differences are found
between the model simulation data and the experiment.

Fig. 10.2 Comparison of the mean cooperation between the model and the experimental data from
(Hristova and Grinberg, 2004).
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Fig. 10.3 Comparison of the mean payoffs between the model and the experimental data from
(Hristova and Grinberg, 2004).

Fig. 10.4 Influence of CI on cooperation rates for the model and in the experiment from Hristova
and Grinberg (2004).

10.4.1.2 Dependence of Cooperation Rate on CI

The adequacy of the model can be further seen from the comparison of the influence
of CI on cooperation displayed by the model and by human subjects (see Figure
10.4; main effect observed with F=16.908 and p<0.01).

In Figure 10.4, a detailed comparison, concerning the cooperation rate depen-
dence on CI, between the predictions of the model and the experimental results is
shown. It is seen from Figure 10.4, that the model gives a good description of the
experimental results with no statistical differences between the mean cooperation
of subjects and the model at all CI levels, and no main effect of the type of player
(model or human) on cooperation (F = 0.386, p = 0.856).
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As stated earlier, our main interest is related to the CI dependence of the coop-
eration rate. The ability to reproduce such details in the experimental data seems
very important to us in order to assess the model’s validity. The simulation by the
model of possible games and moves and outcomes involves the prediction about the
payoff structure of the game and thus indirectly of the CI. The main effect in the CI
dependence found in the simulations comes from the specific anticipatory form of
evaluation of the best move involving the payoffs of the game at hand and of antic-
ipated payoffs reflecting the structure of the current game (see Lalev and Grinberg
(2007) for details).

10.4.1.3 Comparison of Game Outcomes

In Figure 10.5, the distribution of the possible types of game outcomes for the model
and the subjects were compared and no significant difference was found. This statis-
tics is very important as it shows not only the cooperation rate but gives information
on the specifics of the interactions between players. Of special interest is the out-
come CC in which both players cooperate.

Fig. 10.5 Comparisons of types of game outcomes for the model with human subjects experiment
taken from ref. (Hristova and Grinberg, 2004) (with all values for the CI).

10.5 Multi-Agent Simulations

As seen from the comparison with experiments with human participants, the model
presented in the previous sections gives a good account for human playing in IPDG
against a Tf2T player. In this section, we present the results from simulations of the
interactions in a society of artificial players implementing such a model. The aim
of the simulations was to investigate what is the role of anticipation in a society of
payoff-maximizing agents on cooperation and coordination among them.
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10.5.1 Agent Societies

For this purpose, groups of ten agents, with different parameterization of the model,
played IPDG in simulated social environments. They played against each-other in
randomly assigned couples. The length of the IPDG interaction sessions was 100
games for a pair of players. The PD game payoff matrices used in the simulations
were identical to the ones used in the previous sections i.e. with CI from 0.1 to 0.9
(see the description in Section 10.4). In a society, only one pair of agents at a time
played a whole game session. The pairs were chosen randomly with replacement
so it was possible that one or both players from the previous IPDG session also
play in the current one. There were 50 sessions in a simulation. After the end of a
session, agents kept their trained network weights from their play with the opponent
and these weights were kept as initial weights of the agent when it started a new
IPDG with the next opponent. The sequences of last inputs and targets were also
kept for each particular agent as experience from the previous session. These served
as initial inputs and targets in the next IPDG sessions for the agents. When a new
session began in the sequence of inputs the values of the new PD game’s payoffs
were used in the input vector along with the values for the last payoff, last own and
opponent’s moves. The overall performance of all players in the society determined
its specific states and processes. When starting a new IPDG session, each player
was influenced by its experiences in previous sessions with other opponents from
the same society. In these simulations no mixing of agents from different societies
has been done. This simulation scheme was chosen to have some common basis for
comparisons with the simulations with Model A alone and with the experimental
results reported earlier.

In order to investigate the role of anticipation, several parameters of the agents
were varied like the number of the recurrent network’s hidden units, the training
method and the importance and number of fictitious games used for move evaluation
(the parameter β in eq. (1). We considered five societies of agents by varying their
capabilities to predict future opponent’s moves and received payoffs:

1. Agents without anticipation of payoffs and opponent’s move beyond the present
PD game, i.e. β =0 in eq. (1) (Further referred to as Low-Anticipation society);

2. Agents implementing exactly ”Model A” (30 hidden units) from Lalev and Grin-
berg (2007) used in the comparison with the experimental data in Section 10.4.
(Further referred to as Model-A-30 society);

3. Agents with a larger number of hidden units (50 hidden units) which should
increase the predictive power for the model (Further referred to as Model-A-50
society);

4. Agents with 50 hidden units and the pseudo rehearsal training method used (see
Ans et al. (2002) for details). The method circumvents the neural networks’
catastrophic interference problem and improves the learning and therefore the
predictive capability of the model by a rehearsal procedure using pseudo training
vectors. The agents trained by using this method are very sensitive to the learned
in the past in IPDG sessions with other opponents which makes their behavior
difficult to predict (Further referred to as Pseudo-rehearsal society);
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5. Agents with 50 hidden units and strengthened anticipation predispositions: the
number of fictitious games was set to 10 (twice as more as in Model A) as well as
the importance of remote games was increased by setting the discount parameter
from β =0.7 to β =0.9 (Further referred to as High-Anticipation society).

10.5.2 Simulation Results and Discussions

In order to compare the five societies of agents formed on the basis of their anticipa-
tion capabilities, we have concentrated on the following characteristics: cooperation
rate, payoffs, type of games outcomes, and coordination in cooperation (sequences
of games in which both agents cooperated).

Cooperation Rates In a simulated society, agents played ten IPDG sessions on
average. With each next session the experience of players grew. In Figure 10.6,
the cooperation rates for all agents in a society are averaged over their subsequent
playing sessions from the first to the tenth. For example, the cooperation rates for
all agents from their first IPDG session in the simulation are averaged, then for the
second and so forth till the tenth.

Fig. 10.6 Comparison between agent societies of the mean cooperation rates as a function of
experience measured in terms of the number of IPDG sessions.

There was no significant difference between the mean cooperation of the High-
Anticipation and Pseudo-rehearsal simulations (F=1.45, p=0.231) (see Figure 10.7).
These two societies had the highest cooperation rates among the societies as there
was a significant difference between the mean cooperation of the Pseudo-rehearsal
society and the Model-A-50 society (F=18.72, p<0.01). There was also no differ-
ence in the cooperation rates between the agents from the Model-A-30 and Model-
A-50 societies (F=1.93, p=0.168). Their mean cooperation rates were higher than
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the mean cooperation in the Low-Anticipation agent society as in the comparison
between Model-A-30 and the Low-Anticipation societies F=69.95 and p<0.01 (see
Figure 10.7).

Overall, the results presented in Figure 10.6 show that the anticipatory capabil-
ities of adaptive players in social settings may be basic for sustaining reasonable
levels of cooperation over time. Only in simulated societies where agents accounted
to a higher extent for previous experience and used it to predict further behavior a
stable level of cooperation among its players could emerge at least during the first
ten IPDG sessions (as in the Pseudo-rehearsal society). In all other cases there was
a tendency towards gradual decrease in the cooperation rate with time or low coop-
eration rate for all sessions.

In Figure 10.7 the mean cooperation in the agent societies is presented. It is seen
that cooperation increases with anticipation capabilities and reaches about 0.3 for
the High-Anticipation and Pseudo-rehearsal society while in the Low-Anticipation
society it is below 0.05.

Fig. 10.7 Mean level of cooperation in simulations.

Payoffs The mean payoff received by agents is another interesting characteristic
because the agents use maximal payoff-based evaluation mechanism (see Figure
10.8). The High-Anticipation and the Pseudo-rehearsal societies did not differ in the
mean payoffs that were received (F=0.004, p=0.953). They got payoffs higher than
the Model-A-50 society: the difference between the Pseudo-rehearsal and Model-A-
50 societies was significant (F=7.82, p<0.01). The payoffs of society Model-A-30
did not significantly differ from those of society Model-A-50 (F=2.36, p=0.128).
The Low-Anticipation society got the lowest payoffs as its payoffs were lower than
Model-A-30 society’s (F=62.21, p<0.01).
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Fig. 10.8 Mean level of payoffs in simulations.

As a whole, comparison of both the analyses of cooperation and payoffs (Figures
10.7 and 10.8) reveal a rule according to which in the simulations higher cooperation
rates corresponded to higher payoffs.

Again, as with mean cooperation, the High-Anticipation and the Pseudo-rehearsal
societies showed the largest number of CC games and the smallest number of DD
games (see Figure 10.9). The number of CC games was not different for these two
simulated societies (F=0.74, p=0.39). On the other hand, the DD game outcomes
were more for the Pseudo-rehearsal society than in the High-Anticipation society
(F=4.99, p<0.05).

The number of CC games was significantly lower for each next society (as fol-
lows, in Model-A-50, Model-A-30, and Low-Anticipation societies), and in the Low-
Anticipation society they had the smallest number (see Figure 10.9). Concerning
the mutual defection (DD) game outcomes the situation is inverse. In the High-
Anticipation society the smallest number DD games was observed. The largest mean
number of DD games per IPDG session (more than 90 percent of the games) was
reached in the Low-Anticipation simulation. For the DD game outcomes there was
no difference only between Model-A-50 and Model-A-30 societies (F=1.8, p=0.183).

A tendency of increase of the mean number of CC game outcomes per simulation
is observed with increase of the anticipatory propensities of agents in the societies.
The opposite is valid for the mean number of DD game outcomes per simulation
regarding the anticipatory propensities of agents in the societies (Figure 10.9).

For each agent society, we calculated the mean cooperation rates of agents for
games with a specific CI (see Figure 10.10). It was interesting to see if the depen-
dence on CI will be preserved in games among the agents using only a recurrent
network model and playing against a Tf2T opponent as it was the case in the experi-
ment replication (see Section 3). In all societies the monotonously increasing depen-
dence of cooperation on the CI is clearly observed except for the Low-Anticipation
society. This confirms again the role of anticipation in getting this dependence as in
the experimental results with human subjects (Rapoport and Chammah, 1965).
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Fig. 10.9 Comparison of the mean number of CC and DD game outcomes calculated for the agent
societies

Fig. 10.10 CI dependence of the mean cooperation rate in the agent societies.

10.5.2.1 Coordination

We adopted as a first measure of the level of coordination between the agents the
mean number of CC games played in a row per IPDG session. In Figure 10.11, the
statistics for the agent societies are presented. The longest CC coordination lasted
for five games and was present only in the High-Anticipation and Pseudo-rehearsal
societies. Four-games-long sequences were observed also in the latter and in the
Model-A-30 societies. In the Low-Anticipation society no sequences longer than
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Fig. 10.11 Agents’ coordination in terms of the mean length of the series of mutual cooperation
(CC games) per IPDG session averaged over 50 IPDG sessions in each of the agent societies.

two were found. Although the sequences are not very long (especially compared to
DD sequences some of which were 100 games long) the influence of anticipation is
considerable.

This conclusion is confirmed by a related analysis we performed: the number of
agents in a society that participated in a CC game sequence of given length (see
Figure 10.12). It is seen from Figure 10.12 that for example only 70 percent of
the agents from the Low-Anticipation society ever played a CC game whereas for
all other societies this percentage equals 100. Moreover, a considerable number of
agents with sequences of CC games longer than two are observed only in societies
with anticipation.

The agents from the High-Anticipation and Pseudo-rehearsal societies did not
differ in the mean prediction errors of their opponents’ moves. But these agents
were harder to predict by their opponents than this was in the Model-A-50 society.
For example, there was statistical difference between the High-Anticipation soci-
ety and the Model-A-50 society (F=6.8, p<0.05). The difference between Pseudo-
rehearsal and Model-A-50 societies was even bigger (F=11.64, p<0.01). There was
no significant difference between the prediction errors for the opponent’s move in
Model-A-30 society and all High-Anticipation, Pseudo-rehearsal, and Model-A-50
societies. In order that an agent be able to predict well the opponent’s move, it has
to possess good predictive capabilities. On the other hand, an agent with better pre-
diction becomes more complicated and harder to predict.

These facts might account for the difficulties of more complicated players to
guess the others’ move intentions and, in the opposite case, simple agents to be eas-
ier to predict by the same simple agents. In the Low-Anticipation society opponents
are considerably and significantly easier to predict(F=80.46, p<0.01, compared to
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Fig. 10.12 Number of agents which played a series of CC games of a given length for each agent
society.

Model-A-50 society) than in all other societies because in this society agents defect
almost all of the time.

Following the difficulties to predict the opponent’s move in the High-Anticipation
condition, it was also more difficult for the agents to predict their payoffs in the same
simulation than it was in the Pseudo-rehearsal society (F=9.97, p<0.01) and there
was no such difference between the High-Anticipation and Model-A-50 societies.
The prediction errors of the latter also did not differ from those of the Pseudo-
rehearsal simulation. The Model-A-30 society only differed in the prediction of
their payoffs from the Low-Anticipation society (F=53.93, p<0.01) and from the
High-Anticipation society (F=10.31, p<0.01).

There were no differences in the auto-association of the payoff ’Temptation’.
But the different types of agents were not equally capable of predicting the values
of the ’Reward’ and ’Punishment’ payoffs. Best at predicting the R payoff were the
agents from the Pseudo rehearsal simulation and those from the Low-Anticipation
simulation (see Figure 10.13) whose mean errors did not significantly differ. But for
the P payoff the Low-Anticipation society had better performance than the Pseudo-
rehearsal society (F=28.55, p<0.01). For the R payoff there was also no differ-
ence between the High-Anticipation and Model-A-50 societies. In all other cases
the mean prediction errors for R differed between societies as can be seen in Figure
10.13. The High-Anticipation and Model-A-50 agents did not differ in their ability
to predict the game payoff matrix and they took medium position in this among all
other agents. The best payoff matrix predictions were made by the Low-Anticipation
society maybe because there was little external information to interfere with these
predictions: the play in this society often converged to the DD Nash equilibrium.
It was followed by the Pseudo-rehearsal society which payoff matrix prediction er-
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Fig. 10.13 Agents’ prediction errors related to opponent move, expected payoff and game struc-
ture.

rors were lower than the remaining three simulations. A possible explanation for the
good payoff predictions of this society is the enhanced training method (Ans et al.,
2002) of its version of the model player. The worst in predicting the PD payoff ma-
trix were the Model-A-30 society. Perhaps, this is due to the low memory/prediction
capacity of its recurrent network architecture and various other information inter-
fered with the auto-association of the game matrix.

10.6 Conclusion

In this chapter, multi-agent models of social interaction based on anticipation were
presented and discussed. Special attention was devoted to a recurrent neural net-
work model used to simulate IPDG playing in a society of agents. The model has
been validated by comparison with human subjects experiments in a previous paper
(see Lalev and Grinberg (2007)) in which participants played individually against a
computer opponent. Several interesting characteristics could be reproduced which
gave confidence that this model could be used in a multi-agent simulation in which
the role of anticipation on cooperation and coordination could be investigated. Once
the adequacy of the model was established we set up a MAS modeling a small so-
ciety of agents interacting among themselves by playing the PD game. We were
interested in the role of anticipation for two essential for successful social function-
ing characteristics - cooperation and coordination. The agents were distributed in
five types of societies based on their anticipatory abilities - from agents with low
predictive ability to agents with high predictive one.

The simulations showed clearly that anticipation is decisive for high level of co-
operation and higher coordination. The results show that the higher the anticipatory
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ability is, the higher the cooperation rate and the coordination in cooperation be-
tween agents are.

In the same time, anticipatory agents opposed to each other get involved into
entangled, sophisticated behavior making mind-reading difficult. A possible way
out of this problem could be the existence and influence of shared norms which
could lead to more coherent and ’transparent’ behavior. But as human cooperation
in IPDG is close in rates to the cooperation of our anticipatory agents, the prediction
is that coordination series among human subjects may be in close ranges to those,
observed in the simulations.

In general, there are no many investigations involving anticipatory agent soci-
eties. Further research, e.g. based on the PD game and/or other games, is needed in
order to explore the full importance of anticipation for social functioning.
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11.1 Introduction

This book has provided various theoretical perspectives on anticipatory processes
in natural and artificial cognitive systems. Advantages have been proposed and con-
firmed in various detailed case studies, which may have given the reader detailed
insights into anticipatory processes and their importance in various cognitive sys-
tems tasks. To wrap up these advantages and give a concluding overview of various
current anticipatory process advantages, this final chapter highlights a concise col-
lection of precise success stories of anticipations in artificial cognitive systems. We
survey fourteen case studies, which were developed during the EU project Min-
dRACES1. In these studies, simulated or real robots were tested in different en-
vironmental tasks, which required advanced sensorimotor and cognitive abilities.
These abilities included the initiation and control of goal-directed actions, the ori-
entation of attention, finding and reaching goal locations, and performing mental
experiments for action selection. All the studies have shown advantages of antici-
patory mechanisms compared to reactive mechanisms in terms of increased robot
autonomy and adaptivity. In some cases, anticipations even caused the development
of new cognitive abilities, which were simply impossible without anticipatory mech-
anisms. For each case study, we indicate relevant associated publications, in which
the interested reader may find further details on the relevant computational archi-
tectures, the involved anticipatory mechanisms, as well as on the analytical and
quantitative results.

While the book as a whole has laid out the theoretical principles and design
methodology for such advancements, this final chapter thus provides various pos-
sible starting points for further developments in both the surveyed system architec-
tures and the presented solutions to the cognitive tasks addressed.

1 MindRACES: From Reactive to Anticipatory Cognitive Embodied Systems; funded under grant
FP6-511931 under the “Cognitive Systems” initiative from the EC.

G. Pezzulo et al. (Eds.): The Challenge of Anticipation, LNAI 5225, pp. 237–254, 2008.
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11.2 Flexible Goal-Directed Arm Control:
The SURE REACH Architecture

SURE REACH (a loose acronym for Sensorimotor, Unsupervised, REdundancy-
REsolving control ArCHchitecture) is a hierarchically structured, self-supervised
learning control architecture (Butz et al., 2007a; Herbort and Butz, 2007). Initially,
SURE REACH explores the interactions of its associated body with the environ-
ment by means of random motor babbling. During these explorations, it forms as-
sociative models of motor-dependent sensory correlations, which is referred to as a
sensorimotor model, and of bodily inverse kinematics. The developing knowledge
of SURE REACH about its body and environment is represented by population-
encoded spatial body representations, and associative structures that correlate the
body representations with each other.

SURE REACH has been applied to the control of a three-degree of freedom arm
in a two-dimensional environment. Due to this setup, each potential target position
can be reached with various arm goal postures and on various paths from the cur-
rent posture to these postures. Given a goal location, SURE REACH consequently
determines not only the most suitable target posture but also the currently optimal
path to that posture online. Due to the population encoding, the associative correla-
tions, and the goal-directed, anticipatory behavior approach, it has been shown that
SURE REACH is able to represent multiple problem solutions implicitly in paral-
lel and thus is able to adjust its behavioral policy highly flexibly to current task
constraints and changing environmental circumstances.

In the original setup (Butz et al., 2007a; Herbort and Butz, 2007), SURE REACH
represents an extrinsic hand space, which encodes hand locations (x-y coordinates)
with a uniformly distributed, partially overlapping 2-D array of neurons. Addition-
ally, an intrinsic posture space similarly encodes arm postures with an uniformly
distributed, partially overlapping 3-D array of neurons (shoulder, elbow, and wrist
angles). SURE REACH learns to correlate these two spaces with each other in a
posture memory, which associates hand with posture space neurons—effectively en-
coding an inverse kinematics model—and a sensorimotor bodyspace model, which
associates postures with each other action dependently. The resulting system is able
to predict which posture is reached given a current posture and chosen motor com-
mand. More importantly, though, it is also able to deduce the posture that preceded
a given posture given some action was executed. This latter capability enables the
system to choose motor commands when given a current posture and a goal posture.
If the goal posture(s) are not in the immediate vicinity, then dynamic programming
can be used to generate potential fields in the representation that are able to guide
the arm to the goal posture by means of closed-loop control.

The representation together with the goal-directed behavior control processes
enable highly flexible and adaptive anticipatory behavior control. Essentially, due to
the anticipatory, redundant encoding of behavior alternatives, the system is able to
initiate goal-directed actions highly effectively and context-dependently (Butz
et al., 2007a). Essentially, the anticipatory architecture learns to reach goal postures
as well as hand goal locations highly reliably. Moreover, the system can flexibly
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adjust its behavior to various task constraints: it can avoid obstacles that block the
shortest path to the goal; it can compensate for broken joints and prefer particular
joint movements over others; it can combine multiple goal constraints—such as a
hand goal location with a particular position of a joint (as long as the hand goal is
still reachable). These capabilities were achieved by simple multiplicative influences
on the architecture.

Moreover, the system can also account for future goal priorities while executing
reaches to current goal locations, essentially preparing for a faster and smoother
reach to a subsequent goal (Herbort and Butz, 2007). Additionally, in collabora-
tion with other MindRACES partners, the architecture was coupled with goal state
selection mechanisms. These selection mechanisms were based on reinforcement
learning and particular the actor-critic method. In the examples investigated, the
goal selection mechanisms chose to reach goals inside a goal region that were the
further away from a punishment region the closer the punishment region and the
stronger the punishment. Essentially, these experiments showed improved decision
making due to the anticipatory representations and the implicitly anticipatory goal
location choice, which emerged from the reinforcement learning architecture. Be-
sides the general effectiveness of the action choice, the data also closely reproduced
data from psychological experiments (Herbort et al., 2007).

In conclusion, SURE REACH is a control architecture that effectively stores al-
ternative (redundant) behavior means and goals. When a particular goal is desired, it
effectively constrains the representation and issues control commands that yield the
behavior that is maximally suitable given the current goal and (optionally) further
current constraints. The achieved behavioral flexibility is only possible due to the ef-
fectively encoded sensorimotor model and the anticipatory, goal-dependent control
structure.

11.3 Learning Cognitive Maps for Anticipatory
Control: Time Growing Neural Gas

The time-growing neural gas (TGNG) approach builds spatial representations link-
ing sensory codes time- and motor-dependently (Butz et al., 2008b). Essentially,
TGNG learns sensorimotor spaces from scratch via random motor babbling. It forms
a neural network representation of the experienced space and the connectivity within
that space. Distances in the space are represented by the motor activity necessary to
reach one spatial location from the other. Sensory proximity between close spatial
representations is not required. The exploration essentially leads to the generation
of a ‘cognitive’ map of an environment, which is represented by the growing neu-
ral network. The representation is related to place-cell and head-direction cell en-
codings found in the hippocampus in rats (Wiener et al., 2002). Each node in the
growing network essentially encodes a place cell, which is activated by appropriate
sensory input. Each edge, which connects two place cell nodes, associates the av-
erage motor command that was executed to move from one node to the next one.
TGNG is complementary to SURE REACH: it may replace the currently uniformly
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distributed bodyspace encodings in SURE REACH by the flexibly developing spa-
tial encodings.

TGNG was used to control a robot vehicle in a maze environment, which the
robot initially explores by random movements. The developing map enables the in-
vocation of goal-directed control commands that move the vehicle to currently acti-
vated goal locations. This behavior is initiated by the activation of the network nodes
that correspond to the goal locations, the subsequent propagation of that activity via
dynamic programming principles, and the final closed-loop movement to the goal.
Behavior is controlled by activating those motor commands that are associated with
the edge that leads to the next higher activated node from the node best representing
the current robot location. The spatial anticipatory encoding showed to yield highly
effective and context-based action initiation and fast and smooth behavior exe-
cution. Particularly, the system reached goal locations reliably and effectively and
it was able to flexibly adapt its behavior given additional task constraints, such as
preferred movement directions (Butz et al., 2008b).

In sum, TGNG showed that cognitive maps can be learned by simply associating
growing perceptual nodes motor-dependently. As long as the problem is Markov—
so that each perceptual node maps to a unique state in the environment—the result-
ing representation is very suitable to generate flexible, anticipatory, goal directed
control commands. The advantage of connecting states in time is that states can be
connected that may strongly differ in how they are perceived as long as they are
easily reached from each other. As a consequence, the cognitive map is rather in-
dependent of sensory proximity. It represents proximity directly motor dependently,
that is, which motor effort is necessary to reach a location in space from another
one. The consequence is that direct anticipatory, highly flexible behavioral control
is possible.

11.4 Learning Effective Directional Arm Control:
The Evolutionary System XCSF

The XCSF classifier system is well-known in the evolutionary computation com-
munity for its robust capability of iteratively learning function approximations ac-
curately and reliably (Wilson, 2002). The system has been applied to approximation
tasks of up-to seven dimensions and it has shown to be machine-learning competi-
tive in several respects (Butz et al., 2008a). In behavioral tasks, the system has also
been applied to the problem of learning generalized Q-value functions in real-valued
domains (Lanzi et al., 2006).

Recently, during the MindRACES project, XCSF was further developed to yield
directional, anticipatory control structures. In a first application of the resulting ar-
chitecture, a directional control structure was learned for an arm with three degrees
of freedom in a two-dimensional environment. The architecture mapped the arm
posture space by evolving a population of overlapping, piece-wise (linear) classi-
fier approximations. Each classifier encoded the control commands necessary for
a directional movement in a particular arm posture subspace of the environment.



11 Endowing Artificial Systems with Anticipatory Capabilities: Success Cases 241

During learning, XCSF partitioned the posture space of the simulated arm to ac-
curately predict how motor actions affect hand movements. The inversion of the
predictions enabled goal-directed, closed-loop control of reaching movements. The
system reached remote hand locations accurately, reliably, and effectively. More-
over, it was shown that the learning approach did not rely on the particular sensory
inputs nor on a linear mapping. In fact, the evolving control map in XCSF is in-
herently non-linear. Due to the predictive learning approach and the consequent,
inverse, piece-wise linear control approach, the system yields fast and smooth be-
havior execution patterns (Butz and Herbort, 2008).

In sum, an evolutionary approach was used to learn a forward-inverse piece-wise
linear mapping of an arm control space, which was represented by a population of
neural classifiers. Only the employed forward-inverse anticipatory representations
of the classifiers coupled with goal-based, directional closed-loop control enabled
the effective invocation of fast and smooth behavioral control.

11.5 Anticipatory Target Motion Prediction

To solve the task of predicting the movement of a visual target, a learning linear
associator with memory, embedded within a Kalman filter was developed. While the
Kalman filter takes care of the prediction of the target location the linear associator
learns the model of the target motion (Balkenius and Johansson, 2007; Balkenius
and Gardenfors, 2008). The memory component stores previous observations and
allows the associator to train on a large number of observation in each iteration. This
technique effectively emulated some of the advantages of batch-training methods
within an on-line learning system.

The learning system has been applied to a number of task in which a tracking
component is necessary, including the tracking of moving balls in partially occluded
situations and the modeling of pursuit eye-movements. By combining the learning
predictor with an inverse model of a robotic arm with three degrees of freedom,
it became possible to catch a plastic toy fish that moved along a regular circular
path. The system learned to predict the location of the target using color tracking
in combination with the associator described above. The implemented system had a
delay of approximately 500 ms from camera image to motor control. The prediction
mechanism was essential for successful tracking as well as for the manipulation
of moving objects. It also allowed for faster and smoother behavior execution
since actions can be directed toward the future location of the target.

Prediction is an important ability that is useful as a component in many different
applications. The results showed that motion prediction can be effectively included
in many different tasks. Furthermore, it was investigated how different learning sys-
tems can be adapted for prediction by delaying inputs, outputs, and training data in
different ways. A general conclusion is that any learning system can be adapted for
prediction tasks in the way outlined and that predictive learning can be vary fast in
simple situations.
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11.6 Anticipatory Spatial Attention with Saliency Maps

A new approach of learning saliency maps was formulated that allows standard re-
inforcement learning techniques to be used in a number of attention tasks (see chap-
ter 4). The approach is based on a novel and compact formulation of a saliency map,
which allows many types of visual information to be combined in a coherent way.
In a current implementation, feature-based and spatial attention was combined in a
seamless way. The central idea is that the saliency map can be seen as an approxima-
tion of a value function for reinforcement learning. Unlike the standard action-value
function in reinforcement learning, there is no state in this formulation. Instead,
each location in the image corresponds to an individual action that directs attention
to that location. Since all different sources of attentional signals eventually lead to
attention that is spatially focused, the approach provides a common language for all
such processes.

The mechanism has been applied to selective attention as well as priming in
sensory processing. The mechanism is general enough to be used in any system that
includes any form of sensory selection. In particular, the mechanism was used to
select targets for visual tracking. It can also be used to improve top-down attention
by tuning it to external reinforcement. Moreover, it improves information seeking
by allocating larger processing resources to input data that resembles previously
rewarded stimuli.

The new mechanism shows how it is possible to add reinforcement learning also
to systems that are not use to control actions directly and suggests a general strategy
for the marriage between reinforcement learning and perceptual processing (Balke-
nius and Winberg, 2008). Moreover, the proposed mechanism can be used as an
important part of a complete reinforcement learning architecture to select stimuli
as well as actions. To the best of our knowledge, this is the first computationally
efficient implementation of a mechanism first suggested in (Balkenius, 2000).

11.7 Behavior Prediction in a Group of Robots

A combination of several techniques was used to anticipate the future behavior of a
group of robots (Johansson and Balkenius, 2007). Kalman filters were used for short
term prediction and correction of tracking data. Associative anticipatory attention
mechanisms were used to learn where robot will reappear after they disappeared
behind obstacles and to produce epistemic actions in the form of directed attention
to gain optimal information about the behavior of other robots. The system also used
internal simulation based on internal models of the other robots to anticipate how
they will behave, in order to select appropriate actions in relation to the other robots.
The robots also used a form of primitive joint attention through communication
about their observations.

The combined mechanisms were used to investigate how a robot can control
its own behavior depending on the anticipated behavior of another robot. A hiding
scenario was implemented using a multi-robot set-up. There were four robot thieves
and two guards that patrolled the environment in a regular fashion. The task of
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the thieves was to hide from the robot guards while navigating to certain places
in the environment. The implemented system showed improved decision making
by simulating the other robots’ behavior. Faster and smoother behavior execution
was achieved by employing anticipatory mechanisms at three levels: at a low level of
motor control, at an intermediate level for avoiding collision with other robots, and
at a higher level for reaching desired goals without interference with other robots.

The implementation shows how anticipation at a number of levels can be made to
work together within a unified agent architecture and addresses many of the difficul-
ties that arise as complex anticipatory systems are built. It is believed that this is the
first architecture that combines this many aspects of anticipation in a coherent sys-
tem and successfully controls the individual anticipatory behavior of a robot as well
as the emergent interactions between a group of robots with similar or conflicting
goals.

11.8 Enhanced Adaptivity in a Predator-Prey Scenario

Another study investigated how anticipations can enhance the adaptivity in a preda-
tor-prey scenario, in which a predator (usually the dog like Sony AIBOTMrobot)
is supposed to catch a prey (such as a simpler robot with a reactive behavior, or
in more sophisticated scenarios, a second AIBOTM). First of all, the magnitude of
the benefits by implementing anticipatory behavior for the predator depends on its
physical abilities like velocity and agility, but seen with respect to the analogue
capabilities of the prey. If, for instance, a predator can navigate much faster than the
prey, then the simple behavior of heading towards the prey and then approaching it
will usually be a sufficient strategy once the prey has been detected. This strategy
can still be filed under reactive behavior, as the necessary anticipatory capabilities
of learning the effects of necessary movements can be achieved quite easily.

A certain form of anticipation is necessary, if prey and predator possess com-
parable navigation abilities and both operate in the open field. The predator has
obviously some advantages if it is able to predict the trajectory of the other robot. If
additionally obstacles are present, which might occlude the opponent, then anticipa-
tory capabilities deliver substantial advantages and it is easy to construct scenarios
in which pure reactive behavior rarely succeeds, for example, if the prey is only
visible for a short amount of time, which is not sufficient for a successful access.

Two approaches have been developed, one is based on Markov models (Lewan-
dowski, 2007) and the second uses artificial immune systems (De Castro and Tim-
mis, 2003). Both approaches operate in the space of observed sensor values and do
not try to estimate robot locations within a world map. For the Markov approach,
the current camera image is transformed into one of a final number of possible
views. The elementary building blocks are the estimated probabilities of transitions
between the current and the following state, given the current action, which are up-
dated continuously while maneuvering. The ability to construct 1-step predictions
could be used now to form chains of actions and to predict possible future outcomes,
or to be more exact, to predict probability distributions over possible states for a
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given time point. The system knows in its representation every so far encountered
state.

Actually, the algorithm implements goal-oriented behavior in a different way.
A desired state is one already experienced view, for which the prey has been seen
from the nearest so far observed distance. Multiple desired states are allowed to
exist. A plausibility check for a necessary condition ensures that the desired goal
states are probably achievable from the current state with the acquired knowledge
of transitions. A backward induction algorithm (Puterman, 1994) is then applied
in a recursive manner that finally a current action can be chosen that, based on
the history of transitions, one of the goal states will be reached as fast as possible.
The algorithm allows that the prey is temporarily hidden, and therefore it is not
mandatory that each step reduces the distance to the prey.

The building blocks and systemic operations of the AIS approach are elements
and procedures that are in line with the immune system metaphor. Simple atomic
elements that code for a condition, an action and an expectation, in terms of the
possible outcome of an action, correspond to the antibody that reacts to a certain
degree matching environmental stimulus, the antigen. Sensor inputs and therefore
the epitopes of the antigens are coded as strings and are compared to the condition
parts of the artificial immune systems elements. The best corresponding element is
chosen and its action is executed. The expected outcome of this single action can be
predicted and this in consequence allows the anticipation of the outcome of future
action sequences in relation to the current situation and therefore the prediction of
the outcome after multiple time steps.

After each successful run, the population of elements is dynamically updated
according to certain interdependency patterns that closely follow Niels Jerne’s im-
mune network theory (Jerne, 1974), with the consequence that the concentration of
elements belonging to successful runs will grow higher and their elements will be
chosen more likely to produce genetically varying offspring than less effective an-
tibodies, which are subsequentially suppressed. Within AIS, the goal to catch the
prey is therefore not explicitly given, but is implicitly coded in the distribution and
concentration of the elements of the network’s population. A main goal of the ex-
periments with artificial immune systems was the evaluation of their capabilities in
controlling a successful predator (and in some cases prey) in match to other control
strategies. Among these were genetically evolved static strategies like differently
complex subsumption architectures, as well as other evolutionary computation al-
gorithms, including classifier systems (XCS) and even anticipatory classifier sys-
tems (Sigaud and Wilson, 2007). In all scenarios, from the simplest without any
obstacles, to the most complex, where both players are controlled by anticipatory
control mechanisms and a hiding place was introduced, the artificial immune sys-
tem approach was able to solve the task of catching the prey (or escaping) very well.
Additionally the behavior exhibited to the human observer in many cases appeared
like a reasonable anticipatory strategy that one would observe also in biological
hunter and prey scenarios.

In conclusion both approaches can be successfully applied, if the behavior of the
prey under similar circumstances remains stable. When the presence of obstacles is
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allowed, they provide substantial advantages over purely reactive models. The
behavior of the prey does not need to be deterministic, but it should not change
abruptly. Thus, the algorithms in their current form are best applicable, if the prey’s
behavior is stationary.

11.9 Adaptive Navigation and Control with
Anticipation

In a real robot task an omnidirectional robot learns to correct inaccuracies while
driving, or even learns to use corrective motor commands when a motor fails, both
partially or completely, to optimize the driving accuracy for soccer competitions
(Rojas and Frster, 2006). The robot anticipates how its actions influence the envi-
ronment. It uses this knowledge to choose the best action fulfilling its intention in
the future. The robot also observes itself to detect drifting effects of its actions and
adapts its own world-model accordingly.

A feed forward neural network with historic and current information of the
robot’s poses is used for learning the robot’s response to the commands. The learned
model can be used to predict deviations from the desired path and takes corrective
actions in advance, thus improving the driving accuracy of the robot. The model
can also be used to monitor the robot and assess if it is performing according to its
learned response function. It was demonstrated that even if a robot loses some mo-
tor’s power, the system can relearn to drive the robot in a straight path, even if the
robot is a black box and we are not aware of how the commands are applied inter-
nally. The robot controller framework integrates action control by choosing actions
based on its own self-model. It integrates attention and monitoring by observing its
own hardware quality to change its behavior and monitoring. Without these three
anticipatory mechanisms, the robot would still fulfill its task to some extent, but not
sufficiently (in the sense of robustness and accuracy) to win an international multi
robot contest.

11.10 Mental Experiments for Selecting Actions

A robotic task consisting in finding and moving to a randomly placed unique col-
ored cup in the room illustrates that anticipatory mechanisms are essential to fulfill
the assignment (Bakker et al., 2006; Zhumatiy et al., 2006). The key idea to solve
the task is to use a forward model to translate sensor inputs to robot movement
commands. This module anticipates a probabilistic world-model to estimate future
rewards by mental experiments. The results of the mental experiments are then used
to select the most promising actions for the motor controller.

The robot is equipped with a color camera and placed in a room, which contains
the colored cup. The camera is mounted in front of the robot and looks a bit down-
wards. It has a very limited field of view in relation to the room. Therefore, the robot
has to find the cup before it can move to the target position.
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The controller of the robot translates sensor input data to robot movement com-
mands. It is trained by various reinforcement learning methods. In (Zhumatiy et al.,
2006) the mean position of all camera pixels in a specific color range of the target
object is used as input for the reinforcement learner. To reduce the huge amount
of memory for the policy, a Piecewise Continuous Nearest-Sequence Memory (PC-
NSM) algorithm is used for general metrics over state-action trajectories. In (Bakker
et al., 2006), the visual information from the camera is preprocessed into a 5x4 bi-
nary grid, which represents the position of the cup in the camera image, if the cup
is visible. To reduce the long training time for reinforcement learning algorithms
for real robots, a probabilistic anticipatory world-model is learned from compara-
tively few real robot experiments. This world-model is then used to conduct mental
experiments to train the controller with Prioritized Sweeping, a modification of the
standard Q-Learning algorithm. The policy is applied with a high repetition rate
during the learning process of the mental model and with a real time repetition rate
in the physical world.

The robot controller framework combines action control, active vision, attention,
goal directed behavior, and monitoring. Removing one of these anticipatory mod-
ules makes it impossible to learn the whole task on a real robot within a reasonable
time frame.

11.11 Anticipations for Believable Behavior

The emotivector (Martinho and Paiva, 2005) is an affective anticipatory mechanism
situated at the agent sensory interface. Each emotivector is coupled with a sensor
and generates affective signals resulting from the mismatch between sensed and
predicted values. Inspired by the psychology of emotion and attention, our imple-
mentation of the mechanism showed how attention grabbing potential as well as
elementary sensations can be automatically generated from the observation of the
values flowing through the agent sensors, and be used to generate believable behav-
ior for the agent.

Two tasks were performed to evaluate the effectiveness of the emotivector mech-
anism: one taking place in the virtual world, where Aini, a synthetic flower, helped
users to perform a word-puzzle task; and another, taking place in the real world,
where the iCat social robot played a game of chess against the user. In both tasks,
the affective signals generated by the emotivector were used to directly control the
affective expression of the synthetic character interacting with the human user. The
results showed that behavior autonomously generated by the emotivector is per-
ceived as believable and understandable by the users.

Anticipation (and the associated uncertainty) plays an important part in the gen-
eration of affective signals. In the emotivector mechanism, anticipatory mechanisms
are used for: deciding whether a percept is salient; defining the quality of the elicited
affective states; allowing the mechanism to be context-free, without any require-
ments related to the manual tuning of parameters. As such, besides being a crucial
factor in the autonomous generation of attentive and affective signals, anticipations
allow parsimonious design.



11 Endowing Artificial Systems with Anticipatory Capabilities: Success Cases 247

The research issue resulting from the gap between the scope of psychological
theory and the engineering needs of the believable character community has only
started to be addressed in a principled manner. The emotivector mechanism is lo-
cated in this area of relevance and addresses the specific question of creating au-
tonomous believable behavior to support the engineering of believable synthetic
characters. The emotivector achieves this goal by fusing the fields of anticipatory
computing and affective computing. By design, this approach is broadly applicable
and provides practical means to significantly improve the capabilities of believable
characters driven by such architectures.

11.12 Anticipatory Behavior in a
Searching-for-an-Object Task

In section 9, the use of analogy making as a prediction mechanism was investi-
gated. Analogy allows prediction making about the current situation based on one
episode in LTM, which could be from a different domain. The analogy involved
can be very superficial or very deep. The AMBR model of analogy making (Koki-
nov, 1994b; Kokinov and Petrov, 2000, 2001) was further developed and augmented
with a transfer and evaluation mechanism, which allowed the implementation of a
real robot scenario involving perception and action execution. These mechanisms
allowed the usage of analogy as a selective attention mechanism and top-down per-
ception mechanism, which directed attention of the robot to anticipated objects or
properties. The scene representation was build gradually including only relevant ob-
jects and relations. The use of analogy as a basis for anticipatory mechanism is novel
and proposed for the first time.

The task in which the model was tested was a ‘searching for an object task’.
The AIBO robot had to find its hidden bone under an object in a room. The objects
differed in shape and color. The robot analyzes the scene, makes a decision where
the object could be, and goes to find it.

In such a task, using a non-anticipatory approach will lead to full search for the
objects below all shapes. Although it cannot be guaranteed that the episode retrieved
by analogy will lead to the correct solution, in many cases it does and the way the
solution is found is unique and was only possible due to analogy making. The ad-
vantage of the analogy based prediction compared to other prediction methods is the
ability to use just one positive trial in order to generate the prediction. The proposed
methods for top-down perception and selective attention based on anticipation deal
with the hard problem of processing visual input. The huge space of objects and
relations is filtered, which allows the mind to handle only small but relevant aspects
of the available information.

The analogy based anticipatory mechanisms seem very promising for finding so-
lutions in some situations. They have to be further tested in richer environments
in order to explorer their full potential and scalability. A promising further devel-
opment seems to be the use of analogy based predictions as a basis for models of
perception and action and work along this line is in progress.
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11.13 The Role of Anticipation in Cooperation and
Coordination

In section 10, the problem of cooperation as a basic principle underlying was investi-
gated in the framework of Iterated Prisoner’s Dilemma Game (IPDG). Results from
simulations with a connectionist architecture of an anticipatory PD player allow the
conclusion that anticipation is of high importance for cooperation to be present in
2x2 interactions as well as in simulated PD play in a society of agents. The archi-
tecture combines a simple recurrent neural network with an auto-associator and a
forward looking evaluation mechanism (Lalev and Grinberg, 2007), implementing
an anticipation-based decision making mechanism. In IPDG, the recurrent network
processes the flow of available information: the structure of the PD matrix, the play-
ers’ moves, and the payoffs obtained from the game. Due to the learning mechanism,
the network correlates this information in time, whenever appropriate (for example,
how players’ moves correspond to gains from the game), and tries to infer informa-
tion that is not available yet—such as the move of the opponent. In the case of a
single couple of IPDG players, the model managed to reproduce results from exper-
iments with human subjects by (Hristova and Grinberg, 2004). Anticipation, rather
than backward-looking reactive behavior, was responsible for the cooperation of the
model against the simple-strategy computer opponent also used in the experiment
with human subjects. Manipulation of anticipation forward-looking parameters also
revealed that the anticipatory properties of the model’s decision making contribute
most to the observed dependence of cooperation on the structure of the payoff ma-
trix (the so-called cooperation index).

With instances of the validated model architecture, simulations of IPDG playing
in small societies were conducted. The aim of the simulations was to investigate the
role of anticipation in a society of payoff-maximizing agents on cooperation and
coordination among them. For this purpose, small groups of agents with different
parameterization of the model played IPDG in simulated social environments. The
parameters were chosen to have five groups of players with increasing anticipatory
capabilities. The analysis of the processes in each society was based on the overall
level of cooperation, mean payoffs, as well as cooperative coordination. It turned out
that the level of cooperation in the simulated IPDG societies grew with anticipation,
starting from 5% in the first society and reaching up to 30% in the fifth society. Cor-
responding to their anticipation, the intermediate types reached intermediate levels
of cooperative interactions.

A tendency of increased mean number of mutual cooperation cases per simu-
lation was observed with increased anticipatory properties of the agents in the so-
cieties. The opposite was valid for the mean number of double non-cooperative
choices (mutual defection) per simulation, as this number increased with dimin-
ishing anticipations in the societies. Higher mutual cooperation is considered an
advantage as long as this is the most profitable outcome for the society in the long
run. The summary payoffs, which were gained in each society, were also positively
correlated with forward-looking capabilities: the higher the anticipation within a so-
ciety, the higher the payoffs obtained by the members of the corresponding society.
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As a first measure for the level of coordination between the agents, the mean num-
ber of mutual cooperation games played in a series per IPDG session was used. The
longest mutual cooperation coordination was observed in the societies with highest
anticipation. Although the sequences are not very long, the influence of anticipation
is considerable.

Cooperation and coordination play a positive role in a society and represent a
decisive advantage. In IPDG, for example, bilateral coordinated cooperation would
result in higher gains for both players. On the level of a society, cooperation and
coordinated actions will lead to high overall productivity and benefits. These simu-
lations showed that anticipation is decisive for high levels of cooperation and higher
coordination. According to the results, the higher the anticipatory capabilities are,
the higher the cooperation rate and the coordination in cooperation between agents.
As human cooperation in IPDG is close in rates to the cooperation of our anticipa-
tory agents, the prediction is that coordination series among human subjects may be
in close ranges to those observed in the simulations.

11.14 Anticipatory Effects of Expectations and
Emotions

Recent computational models in the context of cognitive systems are providing sim-
ple affective states in terms of their functional effects on agent’s behavior. Their
roles are argued to enable adaptive and situated cognition and span from reactive
methods of control (similar to those employed in primitive biological organisms) to
the control of computational resources, attention, and decision making processes.
Systems based on appraisal theory stressed different relations between emotions
and cognition, arguing emotions as a causal precursor for the mechanisms to detect,
classify, and adaptively cope with significant events and environmental changes.
Typically, emotions are modeled as cognitive mechanisms to monitor goal pursuit
in terms of functional appraisal of action achievement and failure. Besides, emo-
tion signals may rule intelligent resource allocation, improve situated cognition, and
generate goals, which are translated into purposive behavior.

Moreover, an approach was investigated that promotes the anticipatory effect of
emotions as a main breakthrough. In so doing, we envisage to address either the
route from emotion to anticipation, or the reverse one, from anticipation to emotion.

Emotions and Anticipation in Goal Directed Agents Our theoretical model of
emotions have been developed by using mathematical and logical tools which have
been developed in the field of decision theory and applied modal logic (Castel-
franchi, 2005; Lorini and Castelfranchi, 2007). This level of specification has been
a first foundational step towards the design of computational architectures for affec-
tive and anticipatory agents.

In realizing a computational model for emotions and anticipations, a multifaceted
approach was adopted by distinguishing different processes behind goal oriented be-
havior. In so doing, practical reasoning, epistemic reasoning, and situated reasoning
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were distinguished and basic principles at the basis of emotions in terms of their
cognitive ingredients were investigated. This promoted a clear disambiguation be-
tween slow, decisional processes, processed devoted to deal with knowledge and
processes related to cope with situated events.

Whereas typical approaches in modeling cognitive agents are oriented at includ-
ing graded primitives and temporal dimensions (i.e. belief on the future), a cog-
nitive approach was adopted, which introduced expectations as emerging attitudes
coming from epistemic and motivational states. A particular use of expectations en-
hancing problem solving and learning abilities has been modeled in the deliberation
and goal selection phases. In addition, by pointing out the subjective character and
the functional role of expectations, as intrinsic cognitive ingredients of many basic
emotions (i.e. surprise, hope, relief, disappointment), a further kind of interaction
between emotion and anticipatory activities was considered that consisted not only
in predicting future events, but also in anticipating future emotions.

In (Piunti et al., 2007c,b,d), the quantitative influence of expectations upon the
terms of a rational decision was investigated. In so doing, expectation driven de-
cision making was introduced(Piunti et al., 2007c), which enabled agents to proac-
tively take decisions either on the basis of anticipated events (i.e. trends of monitored
signals) or on the basis of ongoing needs and desires.

As in appraisal-inspired models, emotions and mental states were provided to
coordinate different computational and physical components required to effectively
interact in complex environment. A clear methodological separation of concerns
allowing the modeler by breaking down the work into two separate and indepen-
dent activities was promoted: while the former was defined referring to the goal
overview in the problem domain and clearly involves decisional processes (i.e. de-
liberation of alternative courses of actions), the latter can be defined through control
frames to improve situated behavior. The following step was made to reinstate the
two approaches by taking into account the correlations and the relative interactions
occurring in system execution model. This allowed to integrate the low-level, situ-
ated reasoning to be used to inform higher decisional processes.

The emergent nature of affective states enables agent to adopt a mental frame
while both expectations and emotions are conveyed to inform reasoning for redi-
recting resources and adopt long term strategies once a disturbing event is detected.
To this end the contribute of Mental States is twofold: from the one side they can re-
lieve the deliberative and the attentive processes from the burdens to process weakly
relevant information in decision processes, excluding action alternatives that are
likely to be less promising or have vanishing likelihood to be achieved. On the other
side, Mental States provide ready to use action selection and resource allocation
strategies that may relieve agent’s need for resource-demanding and meta decision
processes. An additional effect of modeling emotions through mental states is for
agent’s intention reconsideration. Traditional reconsideration strategies indicate an
agent to abandon an intention when a related goal is achieved, when a goal become
infeasible or when the agent relieve some inconsistencies between the world state
and the external conditions necessary for goal achievement. Our model allows basic
emotions to elicit an interruption on normal cognitive processes when unexpected
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events require servicing. Once based on expectations of future states, intention re-
consideration becomes anticipatory and can be used to coordinate behavior with
prediction of future states.

A further ability based on expectation processing is to allow agents to modify
their courses of action in order to anticipatorily coordinate with the other agents
behavior. At this stage, agents were investigated that are able to thwart some ex-
pected events if the expectation is threatful or to promote them if the expectation is
promising (with respect of the ongoing goals) (Piunti et al., 2007a).

Surprise Signals as Filters for the Update of Relevant Beliefs Taking into ac-
count the above mentioned model, a novel approach in epistemic reasoning and
active perception was proposed. A surprise driven belief update processes introduc-
ing a notion of information relevance based on goal processing was presented by
(Lorini and Piunti, 2007). By considering a proactive and an anticipatory perceptive
process, the proposed model implements a novel strategy for epistemic reasoning
according to which agents search and filter information from their environment not
by monitoring nor perceiving all the retrievable data, but according their ongoing
needs, desires, concerns, thus filtering and assessing only what is expected to be
relevant for pursuing their goals.

The surprise based filter mechanism allows agents to consider useful for their be-
lief updates only those information related with their goals and expectations. Raised
from a mismatch between agent’s knowledge and his perceived facts, a surprise sig-
nal is sent back to the control system in order to trigger a belief update process. The
filter mechanisms is then responsible for (1) signaling the inconsistency between
beliefs and an incoming input which is relevant with respect to the current task and
(2) the revision of Beliefs and Expectations on the basis of the incoming relevant
information.

The proposed filter allow agents to realize as useless and unnecessary those ad-
ditional costs spent for data processing. Hence, surprise governed attention enable
agents to process and filter the perceived data according to the ongoing expecta-
tions, modeled on the basis of a knowledge model (the belief base) coupled with
subjective goals importance (related to subjective desires, purposes and concerns).
In so doing they acquire the capability to divide the overall set of perceivable data
in a relevant and irrelevant subsets.

Our experimental analysis measures the costs for perception and belief updates
in agents engaged in dynamic environments. The results show that to higher en-
vironment dynamism, the greater costs sustained for epistemic activities are not
compensated by an enhancement of achieved tasks. This elicit an important, general
strategy exploitable by all those agent engaged in information rich worlds, with big
sized information sources to be reported in their belief base. In these conditions,
only the relevant information was filtered from the environments that was guessed
to be a critical issue for forthcoming cognitive systems (consider for example agents
engaged in an information retrieval task in the context of open system applications).
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11.15 On-Line and Off-Line Anticipation for
Action Control

In a series of studies, the effectiveness of reactive and anticipatory control architec-
tures in predator-prey scenarios were studied. In these scenarios, it was necessary
to satisfy competing drives, such as hunger and the avoidance of predators (Pezzulo
and Calvi, 2006a; Pezzulo, 2008b).

An important aspect of the undertaken investigations focused on the trade-off
between accurate control of action and time spent to form predictions. Anticipatory
mechanisms used on-line with action make it more accurate and permit forecasting
possible dangers arising from it. At the same time, prediction is a costly opera-
tion that requires time, and in principle it can make situated agents less effective or
less responsible to dynamics in their environment such as dangers. This trade-off is
further complicated when anticipatory mechanisms are used off-line with action to
predict multiple and/or distal events (for example, the long-term outcome of several
alternative potential courses of actions). Here the (computational) costs for engag-
ing in ‘imagination’ and ‘planning’ are higher and can prevent effective situated
action. Due to the failure of the earlier AI systems to deal with this trade-offs, it
is believed by several researchers that belong to the ‘novel AI’ (Brooks, 1991) that
situated agents should better act than reason.

Advantages of Anticipatory Mechanisms used On-Line with Action In a first
study (Pezzulo and Calvi, 2006a), the performance of two schema-based agent ar-
chitectures were compared in a predator-prey scenario involving multiple entities
(predators and preys), obstacles, and moving objects. The first agent architecture
included multiple perceptual and motor schemas (for detecting and escaping preda-
tors, detecting and catching preys, etc.), having one inverse and one forward model
(Wolpert and Kawato, 1998) each. These two (coupled) internal models were used
for determining the motor action and for predicting its sensory effects respectively.
Prediction errors (of the forward models) were used for action control and schema
selection: schemas generating reliable predictions (and related to the current active
drives) were selected for controlling action. The second agent instead lacked the
internal forward models.

The results indicated that the first agent architecture demonstrates a better adap-
tivity, since it was better able to satisfy its multiple drives (Pezzulo and Calvi,
2006a). This shows that in such dynamical and demanding environments it is advan-
tageous to use on-line anticipation for action control and schemas selection, despite
the costs of running forward models in real time.

Overall, contrary to the view that situated agents need to be reactive (Brooks,
1991), this experiment indicates that internal modeling is highly advantageous for
situated agents if it is done on-line with action and produces representations whose
format is compatible with the agent’s sensorimotor loop (as in the case of internal
forward models).
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Further Advantages of Off-Line Simulations In a second study (Pezzulo, 2008b),
it was investigated how the same anticipatory mechanisms exploited in the first study
can be exploited off-line to anticipate several steps in the future (an internal, ‘men-
tal’ simulation of behavior) for the sake of (1) preventing dangers and (2) planning
goal-directed action (that is, mentally generating and selecting sequences of actions
to realize further). In this case, the possible advantages or disadvantages of engaging
in ‘imagination’ during situated actions were tested.

Again, two agent architectures were compared, with and without the capability to
re-enact schemas in simulation. In the first agent architecture, the same sensorimo-
tor schemas adopted in the first study where used, but now they were allowed to run
off-line in simulation mode, to predict the long-term sensory consequences of their
motor commands. In simulation mode, motor commands were inhibited (not sent to
the actuators), but fed as sensory inputs to the forward models, which then produced
new sensory predictions that were used by the inverse models for generating new
motor commands ‘as if’ the agents actually sensed the predicted future. The loop
between forward and inverse models allowed generating long-term predictions for
an arbitrary number of future steps. Two additional mechanisms were responsible
for (1) stopping the current action if its predicted outcomes are evaluated as dan-
gerous (a kind of ‘somatic marker’ mechanism, Damasio, 1994), and (2) evaluating,
selecting, and activating the better ‘plans’ (that is, sequences of ‘simulated’ actions).
The second agent architecture used forward models in the on-line control of action,
but lacked the ability to run in generation mode.

The two agent architectures were tested in a tasks consisting in exploring a simu-
lated house for finding a ‘treasure’ without being captured by guards (as in the first
study, each agent architecture had concurrent drives to satisfy). Our results have
shown that the first agent architecture, using anticipation both on-line and off-line
(that is, in generation mode), outperformed the second one in terms of adaptivity
thanks to its capability to predict possible future dangers and to plan from time to
time (Pezzulo, 2008b). This happened despite the costs of simulating and planning.

Consistently with recent simulative theories of cognition (Damasio, 1994; Grush,
2004; Hesslow, 2002), the results of our experiments indicate that mental simula-
tion is an effective strategy for avoiding dangers and planning in dynamic environ-
ments despite the fact that ‘imagination’ can in principle make an agent less effi-
cacious in its current sensorimotor interaction. As argued in (Grush, 2004; Pezzulo
and Castelfranchi, 2007), it is believed that off-line mental simulation is a suitable,
embodied alternative to ‘reasoning by symbol-crunching’ of traditional AI systems,
since it permits internal manipulation of (anticipatory) representations without los-
ing grounding and situatedness. Thanks to anticipation, artificial systems can engage
in mental operations that when performed by ‘ungrounded’ AI systems typically de-
termine a poor performance in situated activities.

Overall, these studies have the potential to shed light on the role of mental simu-
lations, how they enable increasingly complex cognitive capabilities, and how they
open the passage from present-directed to goal-directed, purposive actions (Pezzulo,
2008a; Pezzulo and Castelfranchi, 2007). See also (Pezzulo et al., 2005; Pezzulo and
Calvi, 2005, 2007a) for related studies.
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11.16 Conclusion

We have surveyed fourteen case studies, which were developed during the EU
project MindRACES. In each study, anticipatory mechanisms of (simulated or real)
robots determined an advantage in terms of behavioral flexibility, adaptability, relia-
bility, or social interaction. The presented case studies, however, are only few among
a growing number of examples of how anticipatory mechanisms can enhance the
cognitive and behavioral capabilities of artificial systems or can even develop novel
capabilities that may be impossible without anticipatory mechanisms. Overall, these
studies illustrate that our design methodology, based on a systematic endowment of
artificial systems with anticipatory capabilities, determine huge advantages in terms
of increased autonomy and adaptivity.

We hope that the design methodology we have illustrated throughout the book—
and exemplified in this chapter with success cases—can inspire future research and
real-world product development of cognitive system architectures. Taking the pas-
sage ‘from Reactive to Anticipatory Cognitive Embodied Systems’, this book may
serve as the guideline to successfully design and develop further truly flexible, adap-
tive, effective, and interactive cognitive agents.
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Meyer, W.U., Reisenzein, R., Schützwohl, A.: Towards a process analysis of emo-
tions: The case of surprise. Motivation and Emotion 21, 251–274 (1997)

Miall, R.C., Wolpert, D.M.: Forward models for physiological motor control. Neural
Networks 9(8), 1265–1279 (1996)

Miceli, M., Castelfranchi, C.: The role of evaluation in cognition and social interac-
tion. In: Dautenhahn, K. (ed.) Human cognition and agent technology, Benjamins,
Amsterdam (2000)

Miceli, M., Castelfranchi, C.: The mind and the future. the (negative) power of ex-
pectations. Theory & Psychology 12, 335–366 (2002)

Middleton, F.A., Strick, P.L.: Basal ganglia output and cognition: evidence from
anatomical, behavioral, and clinical studies. Brain Cogn. 42(2), 183–200 (2000)

Milinski, M., Semmann, D., Krambeck, H.-J.: Reputation helps solve the ‘tragedy
of the commons’. Nature 415, 424–426 (2002)

Miller, G.A., Galanter, E., Pribram, K.H.: Plans and the Structure of Behavior. Holt,
Rinehart and Winston, New York (1960)

Millikan, R.G.: Varieties Of Meaning. MIT Press, Cambridge (2004)
Minsky, M.: The Society of Mind. Simon & Schuster, New York (1988)
Minut, S., Mahadevan, S.: A reinforcement learning model of selective visual at-

tention. In: Müller, J.P., Andre, E., Sen, S., Frasson, C. (eds.) Proceedings of the
Fifth International Conference on Autonomous Agents, Montreal, Canada, pp.
457–464. ACM Press, New York (2001)

Mitchell, M.: Analogy-making as perception: A computer model. MIT Press, Cam-
bridge (1993)

Mitchinson, B., Pearson, M., Melhuish, C., Prescott, T.J.: A model of sensorimotor
coordination in the rat whisker system. In: Nolfi, S., Baldassarre, G., Calabretta,
R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB
2006. LNCS (LNAI), vol. 4095, pp. 77–88. Springer, Heidelberg (2006)

Moffat, D., Frijda, N.: Where there’s a will there’s am agent. In: Wooldridge, M.J.,
Jennings, N.R. (eds.) ECAI 1994 and ATAL 1994. LNCS, vol. 890, pp. 245–260.
Springer, Heidelberg (1995)



References 277

Mohan, V., Morasso, P.: A forward / inverse motor controller for cognitive robotics.
In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS,
vol. 4131, pp. 602–611. Springer, Heidelberg (2006)

Moore, A.W., Atkeson, C.G.: Prioritized sweeping: Reinforcement learning with
less data and less real time. Machine Learning 13, 103–130 (1993)

Morrison, C.T., Oates, T., King, G.W.: Grounding the unobservable in the observ-
able: The role and representation of hidden state in concept formation and re-
finement. In: Working Notes of AAAI Spring Symposium Workshop: Learning
Grounded Representations (2001)

Müller, H.J., Rabbit, P.M.A.: Reflexive orienting of visual attention: time course
of activation and resistance to interruption. Journal of Experimental Psychology:
Human Perception and Performance 15(2), 315–330 (1989)

Navalpakkam, V., Itti, L.: Towards a unified model for attention and recognition. In:
Proc. Society for Neuroscience Annual Meeting, SFN’03 (Nov. 2003)

Navalpakkam, V., Itti, L.: Modeling the influence of task on attention. Vision Re-
search 45(2), 205–231 (2005)

Navalpakkam, V., Itti, L.: Search goal tunes visual features optimally. Neuron 53(4),
605–617 (2007), Also see commentary / preview entitled “Paying Attention to
Neurons with Discriminating Taste” by Pouget, A. and Bavelier, D., Neuron
53(4), 473–475 (2007)

Neisser, U.: Cognition and reality. W.H. Freeman, New York (1976)
Nolfi, S., Floreano, D.: Evolutionary Robotics. MIT Press, Cambridge (2000)
Nolfi, S., Tani, J.: Extracting regularities in space and time through a cascade of

prediction networks: The case of a mobile robot navigating in a structured envi-
ronment. Connection Science 11(2), 125–148 (1999)

Norman, D.A., Shallice, T.: Attention to action: Willed and automatic control of
behaviour. In: Davidson, R.J., Schwartz, G.E., Shapiro, D. (eds.) Consciousness
and Self-Regulation: Advances in Research and Theory, Plenum Press, New York
(1986)

Ognibene, D., Rega, A., Baldassarre, G.: A model of reaching integrating continu-
ous reinforcement learning, accumulator models, and direct inverse modeling. In:
From Animals to Animats, vol. 9, pp. 381–393 (2006)
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Pérez-Ortiz, J.A., Gers, F.A., Eck, D., Schmidhuber, J.: Kalman filters improve

LSTM network performance in problems unsolvable by traditional recurrent nets.
Neural Networks 16, 241–250 (2003)

Petkov, G., Kiryazov, K., Grinberg, M., Kokinov, B.: Modelling top-down percep-
tion and analogical transfer with single anticipatory mechanism. In: Proceedings
of the Second European Cognitive Science Conference, Greece (2007)

Petta, P., Trappl, R. (eds.): Creating Personalities for Synthetic Actors. LNCS,
vol. 1195. Springer, Heidelberg (1997)

Pezzulo, G.: Anticipation and future-oriented capabilites in natural and artificial
cognition. In: Lungarella, M., Iida, F., Bongard, J.C., Pfeifer, R. (eds.) 50 Years
of Aritficial Intelligence. LNCS (LNAI), vol. 4850, pp. 258–271. Springer, Hei-
delberg (2007)

Pezzulo, G.: Coordinating with the future: the anticipatory nature of representation.
Minds and Machines 18(2), 179–225 (2008a)

Pezzulo, G.: A study of off-line uses of anticipation. In: Asada, M., Tani, J., Hallam,
J., Meyer, J.-A. (eds.) Proceedings of SAB 2008. LNCS (LNAI), vol. 5040, pp.
372–382. Springer, Heidelberg (2008b)

Pezzulo, G., Baldassarre, G., Butz, M.V., Castelfranchi, C., Hoffmann2, J.: From
actions to goals and vice-versa: Theoretical analysis and models of the ideomotor
principle and TOTE. In: Butz, M.V., Sigaud, O., Pezzulo, G., Baldassarre, G.
(eds.) ABiALS 2006. LNCS (LNAI), vol. 4520, pp. 73–93. Springer, Heidelberg
(2007)



References 279

Pezzulo, G., Calvi, G.: Dynamic computation and context effects in the hybrid ar-
chitecture akira. In: Dey, A.K., Kokinov, B., Leake, D.B., Turner, R. (eds.) CON-
TEXT 2005. LNCS (LNAI), vol. 3554, pp. 368–381. Springer, Heidelberg (2005)

Pezzulo, G., Calvi, G.: A schema based model of the praying mantis. In: Nolfi,
S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A.,
Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 211–223.
Springer, Heidelberg (2006a)

Pezzulo, G., Calvi, G.: Toward a perceptual symbol system. In: Proceedings of
the Sixth International Conference on Epigenetic Robotics: Modeling Cognitive
Development in Robotic Systems. Lund University Cognitive Science Studies,
vol. 118 (2006b)

Pezzulo, G., Calvi, G.: Designing modular architectures in the framework akira.
Multiagent and Grid Systems 3(1), 65–86 (2007a)

Pezzulo, G., Calvi, G.: Schema-based design and the AKIRA schema language: An
overview. In: Butz, M.V., Sigaud, O., Pezzulo, G., Baldassarre, G. (eds.) ABiALS
2006. LNCS (LNAI), vol. 4520, pp. 128–152. Springer, Heidelberg (2007b)

Pezzulo, G., Calvi, G., Ognibene, D., Lalia, D.: Fuzzy-based schema mechanisms in
akira. In: CIMCA ’05: Proceedings of the International Conference on Computa-
tional Intelligence for Modelling, Control and Automation and International Con-
ference on Intelligent Agents, Web Technologies and Internet Commerce Vol.-2,
Washington, DC, USA, pp. 146–152. IEEE Computer Society Press, Los Alami-
tos (2005)

Pezzulo, G., Castelfranchi, C.: The symbol detachment problem. Cognitive Process-
ing 8(2), 115–131 (2007)

Pfeifer, R., Gomez, G.: Interacting with the real world: Design principles for intel-
ligent systems. Artificial Life and Robotics 9, 1–6 (2004)

Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (1999)
Piaget, J.: The Construction of Reality in the Child. Ballentine, New York (1954)
Piaget, J.: Biology and Knowledge. Edinburgh University Press, Edinburgh (1971)
Picard, R.: Affective Computing. MIT Press, Cambridge (1997)
Pierce, D.M., Kuipers, B.J.: Map learning with uninterpreted sensors and effectors.

Artificial Intelligence 92, 169–227 (1997)
Piunti, M., Castelfranchi, C., Falcone, R.: Anticipatory coordination through action

observation and behavior adaptation. In: Proceedings of AISB’07 - Artificial and
Ambient Intelligence - Session on Mindful Environments (2007a)

Piunti, M., Castelfranchi, C., Falcone, R.: Expectations driven approach for situ-
ated, goal-directed agents. In: Dagli Oggetti agli Agenti: AI*IA/TABOO Joint
Workshop (WOA 2007), Genova, Italy (2007b)

Piunti, M., Castelfranchi, C., Falcone, R.: Surprise as shortcut for Anticipation: clus-
tering Mental States in reasoning. In: Proceedings of International Joint Confer-
ence on Artificial Intelligence (IJCAI-07), Hyberadad, India (2007c)
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